Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Ariazi is active.

Publication


Featured researches published by Eric A. Ariazi.


Cancer Research | 2010

The G Protein–Coupled Receptor GPR30 Inhibits Proliferation of Estrogen Receptor–Positive Breast Cancer Cells

Eric A. Ariazi; Eugen Brailoiu; Smitha Yerrum; Heather A. Shupp; Michael Slifker; Heather E. Cunliffe; Michael A. Black; Anne L. Donato; Jeffrey B. Arterburn; Tudor I. Oprea; Eric R. Prossnitz; Nae J. Dun; V. Craig Jordan

The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells

Jane Yu; Victoria A. Robb; Tasha Morrison; Eric A. Ariazi; Magdalena Karbowniczek; Aristotelis Astrinidis; Chunrong Wang; Lisa Hernandez-Cuebas; Laura F. Seeholzer; Emmanuelle Nicolas; Harvey Hensley; V. Craig Jordan; Cheryl L. Walker; Elizabeth P. Henske

Lymphangioleiomyomatosis (LAM) is an often fatal disease primarily affecting young women in which tuberin (TSC2)-null cells metastasize to the lungs. The mechanisms underlying the striking female predominance of LAM are unknown. We report here that 17-β-estradiol (E2) causes a 3- to 5-fold increase in pulmonary metastases in male and female mice, respectively, and a striking increase in circulating tumor cells in mice bearing tuberin-null xenograft tumors. E2-induced metastasis is associated with activation of p42/44 MAPK and is completely inhibited by treatment with the MEK1/2 inhibitor, CI-1040. In vitro, E2 inhibits anoikis of tuberin-null cells. Finally, using a bioluminescence approach, we found that E2 enhances the survival and lung colonization of intravenously injected tuberin-null cells by 3-fold, which is blocked by treatment with CI-1040. Taken together these results reveal a new model for LAM pathogenesis in which activation of MEK-dependent pathways by E2 leads to pulmonary metastasis via enhanced survival of detached tuberin-null cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time

Eric A. Ariazi; Heather E. Cunliffe; Joan S. Lewis-Wambi; Michael Slifker; Amanda L. Willis; Pilar Ramos; Coya Tapia; Helen R. Kim; Smitha Yerrum; Emmanuelle Nicolas; Yoganand Balagurunathan; Eric A. Ross; V. Craig Jordan

In laboratory studies, acquired resistance to long-term antihormonal therapy in breast cancer evolves through two phases over 5 y. Phase I develops within 1 y, and tumor growth occurs with either 17β-estradiol (E2) or tamoxifen. Phase II resistance develops after 5 y of therapy, and tamoxifen still stimulates growth; however, E2 paradoxically induces apoptosis. This finding is the basis for the clinical use of estrogen to treat advanced antihormone-resistant breast cancer. We interrogated E2-induced apoptosis by analysis of gene expression across time (2–96 h) in MCF-7 cell variants that were estrogen-dependent (WS8) or resistant to estrogen deprivation and refractory (2A) or sensitive (5C) to E2-induced apoptosis. We developed a method termed differential area under the curve analysis that identified genes uniquely regulated by E2 in 5C cells compared with both WS8 and 2A cells and hence, were associated with E2-induced apoptosis. Estrogen signaling, endoplasmic reticulum stress (ERS), and inflammatory response genes were overrepresented among the 5C-specific genes. The identified ERS genes indicated that E2 inhibited protein folding, translation, and fatty acid synthesis. Meanwhile, the ERS-associated apoptotic genes Bcl-2 interacting mediator of cell death (BIM; BCL2L11) and caspase-4 (CASP4), among others, were induced. Evaluation of a caspase peptide inhibitor panel showed that the CASP4 inhibitor z-LEVD-fmk was the most active at blocking E2-induced apoptosis. Furthermore, z-LEVD-fmk completely prevented poly (ADP-ribose) polymerase (PARP) cleavage, E2-inhibited growth, and apoptotic morphology. The up-regulated proinflammatory genes included IL, IFN, and arachidonic acid-related genes. Functional testing showed that arachidonic acid and E2 interacted to superadditively induce apoptosis. Therefore, these data indicate that E2 induced apoptosis through ERS and inflammatory responses in advanced antihormone-resistant breast cancer.


Biological Chemistry | 2006

Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells

Shengxi Liu; Maen Abdelrahim; Shaheen Khan; Eric A. Ariazi; V. Craig Jordan; Stephen Safe

Abstract The aryl hydrocarbon receptor (AhR) binds with high affinity to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatics, but also binds with lower affinity to structurally diverse exogenous and endogenous chemicals. One study reported that 3-methylcholanthrene (3MC) activated the estrogen receptor (ER) through the AhR, which acts as co-regulatory protein, whereas a recent report showed that 3MC directly bound and activated ERα. This study also shows that the AhR agonists benzo[a]pyrene, 3,3′,4,4′-tetrachlorobiphenyl, chrysin, 6-methyl-1,3,8-trichlorodibenzofuran, and 3,3′-diindolylmethane also induce ERα-dependent transactivation. Moreover, in chromatin immunoprecipitation assays, these compounds induce binding of AhR and ERα to the CYP1A1 and pS2 gene promoters, which is consistent with their activities as both selective AhR modulators (SAhRMs) and selective ER modulators (SERMs).


Molecular Cancer Therapeutics | 2007

Exemestane's 17-hydroxylated metabolite exerts biological effects as an androgen

Eric A. Ariazi; Andrei Leitao; Tudor I. Oprea; Bin Chen; Teresa Louis; Anne M. Bertucci; Shaun D. Gill; Helen R. Kim; Heather A. Shupp; Jennifer R. Pyle; Alexis Madrack; Anne L. Donato; Dong Cheng; James R. Paige; V. Craig Jordan

Aromatase inhibitors (AI) are being evaluated as long-term adjuvant therapies and chemopreventives in breast cancer. However, there are concerns about bone mineral density loss in an estrogen-free environment. Unlike nonsteroidal AIs, the steroidal AI exemestane may exert beneficial effects on bone through its primary metabolite 17-hydroexemestane. We investigated 17-hydroexemestane and observed it bound estrogen receptor α (ERα) very weakly and androgen receptor (AR) strongly. Next, we evaluated 17-hydroexemestane in MCF-7 and T47D breast cancer cells and attributed dependency of its effects on ER or AR using the antiestrogen fulvestrant or the antiandrogen bicalutamide. 17-Hydroexemestane induced proliferation, stimulated cell cycle progression and regulated transcription at high sub-micromolar and micromolar concentrations through ER in both cell lines, but through AR at low nanomolar concentrations selectively in T47D cells. Responses of each cell type to high and low concentrations of the non-aromatizable synthetic androgen R1881 paralleled those of 17-hydroexemestane. 17-Hydroexemestane down-regulated ERα protein levels at high concentrations in a cell type–specific manner similarly as 17β-estradiol, and increased AR protein accumulation at low concentrations in both cell types similarly as R1881. Computer docking indicated that the 17β-OH group of 17-hydroexemestane relative to the 17-keto group of exemestane contributed significantly more intermolecular interaction energy toward binding AR than ERα. Molecular modeling also indicated that 17-hydroexemestane interacted with ERα and AR through selective recognition motifs employed by 17β-estradiol and R1881, respectively. We conclude that 17-hydroexemestane exerts biological effects as an androgen. These results may have important implications for long-term maintenance of patients with AIs. [Mol Cancer Ther 2007;6(11):2817–27]


PLOS ONE | 2011

Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells

Zhang-Zhi Hu; Benjamin L. Kagan; Eric A. Ariazi; Dean S. Rosenthal; Lihua Zhang; Jordan V. Li; Hongzhan Huang; Cathy H. Wu; V. Craig Jordan; Anna T. Riegel; Anton Wellstein

Background Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis. Methodology/Principal Findings Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation. Conclusions G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen.


Clinical Cancer Research | 2006

Development and therapeutic options for the treatment of raloxifene-stimulated breast cancer in athymic mice

Ruth O'Regan; Clodia Osipo; Eric A. Ariazi; Eun Sook Lee; Kathleen Meeke; Caroline Morris; Anne M. Bertucci; Mohammad A.B. Sarker; Ronald Grigg; V. Craig Jordan

Purpose: Selective estrogen receptor modulators (SERM) are used for the treatment and prevention of breast cancer (tamoxifen) and osteoporosis (raloxifene). Mechanisms of tamoxifen-resistance in breast cancer are incompletely understood but current research is focused on crosstalk between growth factor receptors and the estrogen receptor α (ERα) pathway. There is increasing clinical use of raloxifene for the treatment of osteoporosis, but the widespread use of this SERM will have consequences for the treatment of breast cancer in raloxifene-exposed women. Experimental Design: We took the strategic step of developing a raloxifene-resistant tumor (MCF-7RALT) model in vivo and investigating the mechanisms responsible for resistance. Results: MCF-7RALT tumors exhibited phase I SERM resistance, growing in response to SERMs and 17β-estradiol. Epidermal growth factor receptor/HER1 and HER2/neu mRNAs were increased in MCF-7RALT tumors. The HER2/neu blocker, trastuzumab, but not the epidermal growth factor receptor blocker, gefitinib, decreased the growth of MCF-7RALT tumors in vivo. Consequently, trastuzumab decreased prosurvival/proliferative proteins: phospho-HER2/neu, total HER2/neu, phospho-Akt (protein kinase B), glycogen synthetase kinase-3, cyclin D1, and the antiapoptotic protein X chromosome-linked inhibitor of apoptosis, whereas increasing the proapoptotic protein, caspase-7, in raloxifene-treated MCF-7RALT tumors. Interestingly, ERα protein was overexpressed in untreated MCF-7RALT tumors and hyperactivated in cells derived from these tumors. Only fulvestrant completely inhibited the growth and ERα activity of MCF-7RALT tumors. The coactivator of ERα, amplified in breast cancer-1 protein was modestly increased in the raloxifene-treated MCF-7RALT tumors and increased both basal and estradiol-induced activity of ERα in cells derived from the MCF-7RALT tumors. Conclusions: These results suggest that overexpression and increased activity of HER2/neu might be responsible for the development of raloxifene-resistant breast cancer. The results also suggest that increased expression of basal activity of ERα could contribute to the hypersensitivity of MCF-7RALT tumors in response to estradiol because only fulvestrant blocked growth and ERα activity.


The Breast | 2009

New hypotheses and opportunities in endocrine therapy: amplification of oestrogen-induced apoptosis

V. Craig Jordan; Joan S. Lewis-Wambi; Roshani R. Patel; Helen R. Kim; Eric A. Ariazi

AIMS To outline the progress being made in the understanding of acquired resistance to long term therapy with the selective oestrogen receptor modulators (SERMs, tamoxifen and raloxifene) and aromatase inhibitors. The question to be addressed is how we can amplify the new biology of oestrogen-induced apoptosis to create more complete responses in exhaustively antihormone treated metastatic breast cancer. METHODS AND RESULTS Three questions are posed and addressed. (1) Do we know how oestrogen works? (2) Can we improve adjuvant antihormonal therapy? (3) Can we enhance oestrogen-induced apoptosis? The new player in oestrogen action is GPR30 and there are new drugs specific for this target to trigger apoptosis. Similarly, anti-angiogenic drugs can be integrated into adjuvant antihormone therapy or to enhance oestrogen-induced apoptosis in Phase II antihormone resistant breast cancer. The goal is to reduce the development of acquired antihormone resistance or undermine the resistance of breast cancer cells to undergo apoptosis with oestrogen respectively. Finally, drugs to reduce the synthesis of glutathione, a subcellular molecule compound associated with drug resistance, can enhance oestradiol-induced apoptosis. CONCLUSIONS We propose an integrated approach for the rapid testing of agents to blunt survival pathways and amplify oestrogen-induced apoptosis and tumour regression in Phase II resistant metastatic breast cancer. This Pharma platform will provide rapid clinical results to predict efficacy in large scale clinical trials.


The Journal of Steroid Biochemistry and Molecular Biology | 2006

Emerging principles for the development of resistance to antihormonal therapy: Implications for the clinical utility of fulvestrant

Eric A. Ariazi; Joan S. Lewis-Wambi; Shaun D. Gill; Jennifer R. Pyle; Jennifer L. Ariazi; Helen R. Kim; Fernando Cordera; Heather A. Shupp; Tianyu Li; V. Craig Jordan

We seek to evaluate the clinical consequences of resistance to antihormonal therapy by studying analogous animal xenograft models. Two approaches were taken: (1) MCF-7 tumors were serially transplanted into selective estrogen receptor modulator (SERM)-treated immunocompromised mice to mimic 5 years of SERM treatment. The studies in vivo were designed to replicate the development of acquired resistance to SERMs over years of clinical exposure. (2) MCF-7 cells were cultured long-term under SERM-treated or estrogen withdrawn conditions (to mimic aromatase inhibitors), and then injected into mice to generate endocrine-resistant xenografts. These tumor models have allowed us to define Phase I and Phase II antihormonal resistance according to their responses to E(2) and fulvestrant. Phase I SERM-resistant tumors were growth stimulated in response to estradiol (E(2)), but paradoxically, Phase II SERM and estrogen withdrawn-resistant tumors were growth inhibited by E(2). Fulvestrant did not support growth of Phases I and II SERM-resistant tumors, but did allow growth of Phase II estrogen withdrawn-resistant tumors. Importantly, fulvestrant plus E(2) in Phase II antihormone-resistant tumors reversed the E(2)-induced inhibition and instead resulted in growth stimulation. These data have important clinical implications. Based on these and prior laboratory findings, we propose a clinical strategy for optimal third-line therapy: patients who have responded to and then failed at least two antihormonal treatments may respond favorably to short-term low-dose estrogen due to E(2)-induced apoptosis, followed by treatment with fulvestrant plus an aromatase inhibitor to maintain low tumor burden and avoid a negative interaction between physiologic E(2) and fulvestrant.


Molecular Cancer Research | 2017

A New Role for ERα: Silencing via DNA Methylation of Basal, Stem Cell, and EMT Genes

Eric A. Ariazi; John C. Taylor; Michael A. Black; Emmanuelle Nicolas; Michael Slifker; Diana J. Azzam; Jeff Boyd

Resistance to hormonal therapies is a major clinical problem in the treatment of estrogen receptor α–positive (ERα+) breast cancers. Epigenetic marks, namely DNA methylation of cytosine at specific CpG sites (5mCpG), are frequently associated with ERα+ status in human breast cancers. Therefore, ERα may regulate gene expression in part via DNA methylation. This hypothesis was evaluated using a panel of breast cancer cell line models of antiestrogen resistance. Microarray gene expression profiling was used to identify genes normally silenced in ERα+ cells but derepressed upon exposure to the demethylating agent decitabine, derepressed upon long-term loss of ERα expression, and resuppressed by gain of ERα activity/expression. ERα-dependent DNA methylation targets (n = 39) were enriched for ERα-binding sites, basal-up/luminal-down markers, cancer stem cell, epithelial–mesenchymal transition, and inflammatory and tumor suppressor genes. Kaplan–Meier survival curve and Cox proportional hazards regression analyses indicated that these targets predicted poor distant metastasis–free survival among a large cohort of breast cancer patients. The basal breast cancer subtype markers LCN2 and IFI27 showed the greatest inverse relationship with ERα expression/activity and contain ERα-binding sites. Thus, genes that are methylated in an ERα-dependent manner may serve as predictive biomarkers in breast cancer. Implications: ERα directs DNA methylation–mediated silencing of specific genes that have biomarker potential in breast cancer subtypes. Mol Cancer Res; 15(2); 152–64. ©2016 AACR.

Collaboration


Dive into the Eric A. Ariazi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen R. Kim

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela K. Pannier

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet E. Mertz

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Jeff Boyd

Fox Chase Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge