Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Collisson is active.

Publication


Featured researches published by Eric A. Collisson.


Nature Medicine | 2011

Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy

Eric A. Collisson; Anguraj Sadanandam; Peter Olson; William J. Gibb; Morgan Truitt; Shenda Gu; Janine Cooc; Jennifer Weinkle; Grace E. Kim; Lakshmi Jakkula; Heidi S. Feiler; Andrew H. Ko; Adam B. Olshen; Kathleen L Danenberg; Margaret A. Tempero; Paul T. Spellman; Douglas Hanahan; Joe W. Gray

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically 6 months from diagnosis. Numerous phase 3 trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Furthermore, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast and lung cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies, along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasimesenchymal and exocrine-like, and we present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies.


Cell | 2014

Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy.

Mara H. Sherman; Ruth T. Yu; Dannielle D. Engle; Ning Ding; Annette R. Atkins; Hervé Tiriac; Eric A. Collisson; Frances Connor; Terry Van Dyke; Serguei Kozlov; Philip Martin; Tiffany W. Tseng; David W. Dawson; Timothy R. Donahue; Atsushi Masamune; Tooru Shimosegawa; Minoti V. Apte; Jeremy S. Wilson; Beverly Ng; Sue Lynn Lau; Jenny E. Gunton; Geoffrey M. Wahl; Tony Hunter; Jeffrey A. Drebin; Peter J. O’Dwyer; Christopher Liddle; David A. Tuveson; Michael Downes; Ronald M. Evans

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Proceedings of the National Academy of Sciences of the United States of America | 2012

Subtype and pathway specific responses to anticancer compounds in breast cancer

Laura M. Heiser; Anguraj Sadanandam; Wen-Lin Kuo; Stephen Charles Benz; Theodore C. Goldstein; Sam Ng; William J. Gibb; Nicholas Wang; Safiyyah Ziyad; Frances Tong; Nora Bayani; Zhi Hu; Jessica Billig; Andrea Dueregger; Sophia Lewis; Lakshmi Jakkula; James E. Korkola; Steffen Durinck; Francois Pepin; Yinghui Guan; Elizabeth Purdom; Pierre Neuvial; Henrik Bengtsson; Kenneth W. Wood; Peter G. Smith; Lyubomir T. Vassilev; Bryan T. Hennessy; Joel Greshock; Kurtis E. Bachman; Mary Ann Hardwicke

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma

Nicholas Wang; Zachary Sanborn; Kelly L. Arnett; Laura J. Bayston; Wilson Liao; Charlotte M. Proby; Irene M. Leigh; Eric A. Collisson; Patricia B. Gordon; Lakshmi Jakkula; Sally D. Pennypacker; Yong Zou; Mimansa Sharma; Jeffrey P. North; Swapna Vemula; Theodora M. Mauro; Isaac M. Neuhaus; Philip E. LeBoit; Joe S Hur; Kyung-Hee Park; Nam Huh; Pui-Yan Kwok; Sarah T. Arron; Pierre P. Massion; Allen E. Bale; David Haussler; James E. Cleaver; Joe W. Gray; Paul T. Spellman; Andrew P. South

Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ∼75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.


Cancer Discovery | 2015

Activation of MET via Diverse Exon 14 Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors

Garrett Michael Frampton; Siraj M. Ali; Mark Rosenzweig; Juliann Chmielecki; Xinyuan Lu; Todd Michael Bauer; Mikhail Akimov; Jose A. Bufill; Carrie B. Lee; David Jentz; Rick Hoover; Sai-Hong Ignatius Ou; Ravi Salgia; Tim Brennan; Zachary R. Chalmers; Savina Jaeger; Alan Huang; Julia A. Elvin; Rachel L. Erlich; Alex Fichtenholtz; Kyle Gowen; Joel Greenbowe; Adrienne Johnson; Depinder Khaira; Caitlin McMahon; Eric M. Sanford; Steven Roels; Jared White; Joel Greshock; Robert Schlegel

UNLABELLED Focal amplification and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 (METex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across tumor types are unknown. Here, we report analysis of tumor genomic profiles from 38,028 patients to identify 221 cases with METex14 mutations (0.6%), including 126 distinct sequence variants. METex14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%), brain glioma (0.4%), and tumors of unknown primary origin (0.4%). Further in vitro studies demonstrate sensitivity to MET inhibitors in cells harboring METex14 alterations. We also report three new patient cases with METex14 alterations in lung or histiocytic sarcoma tumors that showed durable response to two different MET-targeted therapies. The diversity of METex14 mutations indicates that diagnostic testing via comprehensive genomic profiling is necessary for detection in a clinical setting. SIGNIFICANCE Here we report the identification of diverse exon 14 splice site alterations in MET that result in constitutive activity of this receptor and oncogenic transformation in vitro. Patients whose tumors harbored these alterations derived meaningful clinical benefit from MET inhibitors. Collectively, these data support the role of METex14 alterations as drivers of tumorigenesis, and identify a unique subset of patients likely to derive benefit from MET inhibitors.


PLOS ONE | 2015

Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA.

Richard B. Lanman; Stefanie Mortimer; Oliver A. Zill; Rene Lopez; Sibel Blau; Eric A. Collisson; Stephen G. Divers; Dave S.B. Hoon; E. Scott Kopetz; Jeeyun Lee; Petros Nikolinakos; Arthur Baca; Bahram G. Kermani; Helmy Eltoukhy; AmirAli Talasaz

Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.


Nature Genetics | 2016

Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

Joshua D. Campbell; Anton Alexandrov; Jaegil Kim; Jeremiah Wala; Alice H. Berger; Chandra Sekhar Pedamallu; Sachet A. Shukla; Guangwu Guo; Angela N. Brooks; Bradley A. Murray; Marcin Imielinski; Xin Hu; Shiyun Ling; Rehan Akbani; Mara Rosenberg; Carrie Cibulskis; Eric A. Collisson; David J. Kwiatkowski; Michael S. Lawrence; John N. Weinstein; Roel G.W. Verhaak; Catherine J. Wu; Peter S. Hammerman; Andrew D. Cherniack; Gad Getz; Maxim N. Artyomov; Robert D. Schreiber; Ramaswamy Govindan; Matthew Meyerson

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor–normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase–Ras–Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.


Nature Genetics | 2015

The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies

Luping Lin; Amit J. Sabnis; Elton Chan; Victor Olivas; Lindsay Cade; Evangelos Pazarentzos; Saurabh Asthana; Dana S. Neel; Jenny Jiacheng Yan; Xinyuan Lu; Luu Pham; Mingxue M Wang; Niki Karachaliou; Maria Gonzalez Cao; Jose Luis Manzano; Jose Miguel Sanchez Torres; Fiamma Buttitta; Charles M. Rudin; Eric A. Collisson; Alain Patrick Algazi; Eric Michael Robinson; Iman Osman; Eva Muñoz-Couselo; Javier Cortes; Dennie T. Frederick; Zachary A. Cooper; Martin McMahon; Antonio Marchetti; Rafael Rosell; Keith T. Flaherty

Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.


Nature Medicine | 2016

Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

Hanane Laklai; Yekaterina A. Miroshnikova; Michael W. Pickup; Eric A. Collisson; Grace E. Kim; Alex S. Barrett; Ryan C. Hill; Johnathon N. Lakins; David D. Schlaepfer; Janna K. Mouw; Valerie S. LeBleu; Nilotpal Roy; Sergey V. Novitskiy; Julia S. Johansen; Valeria Poli; Raghu Kalluri; Christine A. Iacobuzio-Donahue; Laura D. Wood; Matthias Hebrok; Kirk C. Hansen; Harold L. Moses; Valerie M. Weaver

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.


Genome Biology | 2013

Modeling precision treatment of breast cancer

Anneleen Daemen; Obi L. Griffith; Laura M. Heiser; Nicholas Wang; Oana M Enache; Zachary Sanborn; Francois Pepin; Steffen Durinck; James E. Korkola; Malachi Griffith; Joe S Hur; Nam Huh; Jong-Suk Chung; Leslie Cope; Mary Jo Fackler; Christopher B. Umbricht; Saraswati Sukumar; Pankaj Seth; Vikas P. Sukhatme; Lakshmi Jakkula; Yiling Lu; Gordon B. Mills; Raymond J. Cho; Eric A. Collisson; Laura J. van 't Veer; Paul T. Spellman; Joe W. Gray

BackgroundFirst-generation molecular profiles for human breast cancers have enabled the identification of features that can predict therapeutic response; however, little is known about how the various data types can best be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are well-suited for development of strategies to identify the most predictive molecular feature sets.ResultsWe used least squares-support vector machines and random forest algorithms to identify molecular features associated with responses of a collection of 70 breast cancer cell lines to 90 experimental or approved therapeutic agents. The datasets analyzed included measurements of copy number aberrations, mutations, gene and isoform expression, promoter methylation and protein expression. Transcriptional subtype contributed strongly to response predictors for 25% of compounds, and adding other molecular data types improved prediction for 65%. No single molecular dataset consistently out-performed the others, suggesting that therapeutic response is mediated at multiple levels in the genome. Response predictors were developed and applied to TCGA data, and were found to be present in subsets of those patient samples.ConclusionsThese results suggest that matching patients to treatments based on transcriptional subtype will improve response rates, and inclusion of additional features from other profiling data types may provide additional benefit. Further, we suggest a systems biology strategy for guiding clinical trials so that patient cohorts most likely to respond to new therapies may be more efficiently identified.

Collaboration


Dive into the Eric A. Collisson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lakshmi Jakkula

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond J. Cho

University of California

View shared research outputs
Top Co-Authors

Avatar

Wei Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew H. Ko

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinyuan Lu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge