Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Gaucher is active.

Publication


Featured researches published by Eric A. Gaucher.


Nature Genetics | 2005

Resurrecting ancestral alcohol dehydrogenases from yeast

J. Michael Thomson; Eric A. Gaucher; Michelle F. Burgan; Danny W De Kee; Tang Li; John P. Aris; Steven A. Benner

Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called AdhA. The kinetic behavior of AdhA suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used AdhA to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.


Nature | 2008

Palaeotemperature trend for Precambrian life inferred from resurrected proteins

Eric A. Gaucher; Sridhar Govindarajan; Omjoy K. Ganesh

Biosignatures and structures in the geological record indicate that microbial life has inhabited Earth for the past 3.5 billion years or so. Research in the physical sciences has been able to generate statements about the ancient environment that hosted this life. These include the chemical compositions and temperatures of the early ocean and atmosphere. Only recently have the natural sciences been able to provide experimental results describing the environments of ancient life. Our previous work with resurrected proteins indicated that ancient life lived in a hot environment. Here we expand the timescale of resurrected proteins to provide a palaeotemperature trend of the environments that hosted life from 3.5 to 0.5 billion years ago. The thermostability of more than 25 phylogenetically dispersed ancestral elongation factors suggest that the environment supporting ancient life cooled progressively by 30 °C during that period. Here we show that our results are robust to potential statistical bias associated with the posterior distribution of inferred character states, phylogenetic ambiguity, and uncertainties in the amino-acid equilibrium frequencies used by evolutionary models. Our results are further supported by a nearly identical cooling trend for the ancient ocean as inferred from the deposition of oxygen isotopes. The convergence of results from natural and physical sciences suggest that ancient life has continually adapted to changes in environmental temperatures throughout its evolutionary history.


Nature | 2003

Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

Eric A. Gaucher; J. Michael Thomson; Michelle F. Burgan; Steven A. Benner

Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55–65 °C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.


Nature Structural & Molecular Biology | 2011

Single-molecule paleoenzymology probes the chemistry of resurrected enzymes

Raul Perez-Jimenez; Alvaro Ingles-Prieto; Zi-Ming Zhao; Inmaculada Sanchez-Romero; Jorge Alegre-Cebollada; Pallav Kosuri; Sergi Garcia-Manyes; T. Joseph Kappock; Masaru Tanokura; Arne Holmgren; Jose M. Sanchez-Ruiz; Eric A. Gaucher; Julio M. Fernandez

It is possible to travel back in time at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx) dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32 °C more stable than modern enzymes, and the oldest show markedly higher activity than extant ones at pH 5. We probed the mechanisms of reduction of these enzymes using single-molecule force spectroscopy. From the force dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs use chemical mechanisms of reduction similar to those of modern enzymes. Although Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over 4 Gyr to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth.


Journal of the American Chemical Society | 2013

Hyperstability and Substrate Promiscuity in Laboratory Resurrections of Precambrian β‑Lactamases

Valeria A. Risso; Jose A. Gavira; Diego F. Mejia-Carmona; Eric A. Gaucher; Jose M. Sanchez-Ruiz

We report a sequence reconstruction analysis targeting several Precambrian nodes in the evolution of class-A β-lactamases and the preparation and experimental characterization of their encoded proteins. Despite extensive sequence differences with the modern enzymes (~100 amino acid differences), the proteins resurrected in the laboratory properly fold into the canonical lactamase structure. The encoded proteins from 2-3 billion years (Gyr)-old β-lactamase sequences undergo cooperative two-state thermal denaturation and display very large denaturation temperature enhancements (~35 °C) relative to modern β-lactamases. They degrade different antibiotics in vitro with catalytic efficiencies comparable to that of an average modern enzyme. This enhanced substrate promiscuity is not accompanied by significant changes in the active-site region as seen in static X-ray structures, suggesting a plausible role for dynamics in the evolution of function in these proteins. Laboratory resurrections of 2-3 Gyr-old β-lactamases also endowed modern microorganisms with significant levels of resistance toward a variety of antibiotics, opening up the possibility of performing laboratory replays of the molecular tape of lactamase evolution. Overall, these results support the notions that Precambrian life was thermophilic and that proteins can evolve from substrate-promiscuous generalists into specialists during the course of natural evolution. They also highlight the biotechnological potential of laboratory resurrection of Precambrian proteins, as both high stability and enhanced promiscuity (likely contributors to high evolvability) are advantageous features in protein scaffolds for molecular design and laboratory evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Evolutionary history and metabolic insights of ancient mammalian uricases.

James T. Kratzer; Miguel A. Lanaspa; Michael N. Murphy; Christina Cicerchi; Christina L. Graves; Peter A. Tipton; Eric A. Ortlund; Richard J. Johnson; Eric A. Gaucher

Significance Human susceptibility to gout is driven by the fact that we have a pseudogene for uricase that prevents a functional enzyme from being produced. Our inability to convert highly insoluble uric acid into a more soluble molecule makes us vulnerable to disease and other health complications. We have exploited ancestral sequence reconstruction to better understand how and why apes lost this functional enzyme. Our ancient proteins support one hypothesis that the progressive loss of uricase activity allowed our ancestors to readily accumulate fat via the metabolism of fructose from fruits. This adaptation may have provided our ancestors with an advantage when the energy-rich rainforests of Europe and Asia were displaced by temperate forests by the end of the Oligocene. Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.


Critical Reviews in Biochemistry and Molecular Biology | 2006

The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes

Scott E. Phillips; Patrick Vincent; Kellie E. Rizzieri; Gabriel Schaaf; Vytas A. Bankaitis; Eric A. Gaucher

ABSTRACT Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorbtion diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes. Herein, we review recent progress in deciphering the biological functions of PITPs, and discuss some of the open questions that remain.


Nature Structural & Molecular Biology | 2009

Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy

Raul Perez-Jimenez; Jingyuan Li; Pallav Kosuri; Inmaculada Sanchez-Romero; Arun P. Wiita; David Rodriguez-Larrea; Ana Chueca; Arne Holmgren; Antonio Miranda-Vizuete; Katja Becker; Seung Hyun Cho; Jon Beckwith; Eric Gelhaye; Jean Pierre Jacquot; Eric A. Gaucher; Jose M. Sanchez-Ruiz; B. J. Berne; Julio M. Fernandez

Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection

Fei Chen; Eric A. Gaucher; Nicole A. Leal; Daniel Hutter; Stephanie A. Havemann; Sridhar Govindarajan; Eric A. Ortlund; Steven A. Benner

Any system, natural or human-made, is better understood if we analyze both its history and its structure. Here we combine structural analyses with a “Reconstructed Evolutionary Adaptive Path” (REAP) analysis that used the evolutionary and functional history of DNA polymerases to replace amino acids to enable polymerases to accept a new class of triphosphate substrates, those having their 3′-OH ends blocked as a 3′-ONH2 group (dNTP-ONH2). Analogous to widely used 2′,3′-dideoxynucleoside triphosphates (ddNTPs), dNTP-ONH2s terminate primer extension. Unlike ddNTPs, however, primer extension can be resumed by cleaving an O-N bond to restore an -OH group to the 3′-end of the primer. REAP combined with crystallographic analyses identified 35 sites where replacements might improve the ability of Taq to accept dNTP-ONH2s. A library of 93 Taq variants, each having replacements at three or four of these sites, held eight variants having improved ability to accept dNTP-ONH2 substrates. Two of these (A597T, L616A, F667Y, E745H, and E520G, K540I, L616A) performed notably well. The second variant incorporated both dNTP-ONH2sand ddNTPs faithfully and efficiently, supporting extension-cleavage-extension cycles applicable in parallel sequencing and in SNP detection through competition between reversible and irreversible terminators. Dissecting these results showed that one replacement (L616A), not previously identified, allows Taq to incorporate both reversible and irreversible terminators. Modeling showed how L616A might open space behind Phe-667, allowing it to move to accommodate the larger 3′-substituent. This work provides polymerases for DNA analyses and shows how evolutionary analyses help explore relationships between structure and function in proteins.


Trends in Genetics | 2001

Evolution, language and analogy in functional genomics

Steven A. Benner; Eric A. Gaucher

Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

Collaboration


Dive into the Eric A. Gaucher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose A. Gavira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan F. Cole

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James T. Kratzer

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge