Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Newman is active.

Publication


Featured researches published by Eric A. Newman.


Nature | 2010

Glial and neuronal control of brain blood flow

David Attwell; Alastair M. Buchan; Serge Charpak; Martin Lauritzen; Brian A. MacVicar; Eric A. Newman

Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.


Trends in Neurosciences | 1996

The Muller cell: A functional element of the retina

Eric A. Newman; Andreas Reichenbach

Müller cells are the principal glial cells of the retina, assuming many of the functions carried out by astrocytes, oligodendrocytes and ependymal cells in other CNS regions. Müller cells express numerous voltage-gated channels and neurotransmitter receptors, which recognize a variety of neuronal signals and trigger cell depolarization and intracellular Ca2+ waves. In turn, Müller cells modulate neuronal activity by regulating the extracellular concentration of neuroactive substances, including: (1) K+, which is transported via Müller-cell spatial-buffering currents; (2) glutamate and GABA, which are taken up by Müller-cell high-affinity carriers; and (3) H+, which is controlled by the action of Müller-cell Na(+)-HCO3- co-transport and carbonic anhydrase. The two-way communication between Müller cells and retinal neurons indicates that Müller cells play an active role in retinal function.


Neuroscience | 2004

Potassium buffering in the central nervous system

Paulo Kofuji; Eric A. Newman

Rapid changes in extracellular K+ concentration ([K+](o)) in the mammalian CNS are counteracted by simple passive diffusion as well as by cellular mechanisms of K+ clearance. Buffering of [K+](o) can occur via glial or neuronal uptake of K+ ions through transporters or K+-selective channels. The best studied mechanism for [K+](o) buffering in the brain is called K+ spatial buffering, wherein the glial syncytium disperses local extracellular K+ increases by transferring K+ ions from sites of elevated [K+](o) to those with lower [K+](o). In recent years, K+ spatial buffering has been implicated or directly demonstrated by a variety of experimental approaches including electrophysiological and optical methods. A specialized form of spatial buffering named K+ siphoning takes place in the vertebrate retina, where glial Muller cells express inwardly rectifying K+ channels (Kir channels) positioned in the membrane domains near to the vitreous humor and blood vessels. This highly compartmentalized distribution of Kir channels in retinal glia directs K+ ions from the synaptic layers to the vitreous humor and blood vessels. Here, we review the principal mechanisms of [K+](o) buffering in the CNS and recent molecular studies on the structure and functions of glial Kir channels. We also discuss intriguing new data that suggest a close physical and functional relationship between Kir and water channels in glial cells.


Trends in Neurosciences | 2003

New roles for astrocytes: Regulation of synaptic transmission

Eric A. Newman

Abstract Although glia often envelop synapses, they have traditionally been viewed as passive participants in synaptic function. Recent evidence has demonstrated, however, that there is a dynamic two-way communication between glia and neurons at the synapse. Neurotransmitters released from presynaptic neurons evoke Ca2+ concentration increases in adjacent glia. Activated glia, in turn, release transmitters, including glutamate and ATP. These gliotransmitters feed back onto the presynaptic terminal either to enhance or to depress further release of neurotransmitter. Transmitters released from glia can also directly stimulate postsynaptic neurons, producing either excitatory or inhibitory responses. Based on these new findings, glia should be considered an active partner at the synapse, dynamically regulating synaptic transmission.


The Journal of Neuroscience | 2006

Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling.

Monica R. Metea; Eric A. Newman

Neuronal activity evokes localized changes in blood flow. Although this response, termed neurovascular coupling, is widely used to monitor human brain function and diagnose pathology, the cellular mechanisms that mediate the response remain unclear. We investigated the contribution of glial cells to neurovascular coupling in the acutely isolated mammalian retina. We found that light stimulation and glial cell stimulation can both evoke dilation or constriction of arterioles. Light-evoked and glial-evoked vasodilations were blocked by inhibitors of cytochrome P450 epoxygenase, the synthetic enzyme for epoxyeicosatrienoic acids. Vasoconstrictions, in contrast, were blocked by an inhibitor of ω-hydroxylase, which synthesizes 20-hydroxyeicosatetraenoic acid. Nitric oxide influenced whether vasodilations or vasoconstrictions were produced in response to light and glial stimulation. Light-evoked vasoactivity was blocked when neuron-to-glia signaling was interrupted by a purinergic antagonist. These results indicate that glial cells contribute to neurovascular coupling and suggest that regulation of blood flow may involve both vasodilating and vasoconstricting components.


The Journal of Neuroscience | 2003

Glial Cell Inhibition of Neurons by Release of ATP

Eric A. Newman

ATP is released by neurons and functions as a neurotransmitter and modulator in the CNS. Here I show that ATP released from glial cells can also serve as a potent neuromodulator, inhibiting neurons in the retina of the rat. Activation of glial cells by focal ejection of ATP, ATPγS, dopamine, thrombin, or lysophosphatidic acid or by mechanical stimulation evoked hyperpolarizing responses and outward currents in a subset of retinal ganglion cells by increasing a Ba2+-sensitive K+ conductance in the neurons. This glia-evoked inhibition reduced the firing rate of those neurons that displayed spontaneous spike activity. The inhibition was abolished by the A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (10 nm) and was reduced by the ecto-ATPase inhibitor ARL-67156 (6-N,N-diethyl-d-β,γ-dibromomethyleneATP) (50 μm) and by the ectonucleotidase inhibitor AOPCP [adenosine-5′-O-(α,β-methylene)-diphosphonate] (250 μm). Selective activation of retinal glial cells demonstrated that Müller cells, but not astrocytes, mediate the inhibition. ATP release from Müller cells into the inner plexiform layer of the retina was shown using the luciferin–luciferase chemiluminescence assay. These findings demonstrate that activated glial cells can inhibit neurons in the retina by the release of ATP, which is converted to adenosine by ectoenzymes and subsequently activates neuronal adenosine receptors. The results lend support to the hypothesis that glial cells play an active role in information processing in the CNS.


The Journal of Neuroscience | 1993

Inward-rectifying potassium channels in retinal glial (Muller) cells

Eric A. Newman

The voltage- and K(+)-dependent properties of Muller cell currents and channels were characterized in freshly dissociated salamander Muller cells. In whole-cell voltage-clamp experiments, cells with endfeet intact and cells missing endfeet both displayed strong inward rectification. The rectification was similar in shape in both groups of cells but currents were 9.2 times larger in cells with endfeet. Ba2+ at 100 microM reduced the inward current to 6.8% of control amplitude. Decreasing external K+ concentration shifted the cell current-voltage (I-V) relation in a hyperpolarizing direction and reduced current magnitude. In multichannel, cell-attached patch-clamp experiments, patches from both endfoot and soma membrane displayed strong inward rectification. Currents were 38 times larger in endfoot patches. In single-channel, cell-attached patch-clamp experiments, inward- rectifying K+ channels were, in almost all cases, the only channels present in patches of endfoot, proximal process, and soma membrane. Channel conductance was 27.8 pS in 98 mM external K+. Reducing external K+ shifted the channel reversal potential in a hyperpolarizing direction and reduced channel conductance. Channel open probability varied as a function of voltage, being reduced at more negative potentials. Together, these observations demonstrate that the principal ion channel in all Muller cell regions is an inward-rectifying K+ channel. Channel density is far higher on the cell endfoot than in other cell regions. Whole-cell I-V plots of cells bathed in 12, 7, 4, and 2.5 mM K+ were fit by an equation including Boltzmann relation terms representing channel rectification and channel open probability. This equation was incorporated into a model of K+ dynamics in the retina to evaluate the significance of inward-rectifying channels to the spatial buffering/K+ siphoning mechanism of K+ regulation. Compared with ohmic channels, inward-rectifying channels increased the rate of K+ clearance from the retina by 23% for a 1 mM K+ increase and by 137% for a 9.5 mM K+ increase, demonstrating that Muller cell inward- rectifying channels enhance K+ regulation in the retina.


Progress in Retinal and Eye Research | 2012

Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease.

Joanna Kur; Eric A. Newman; Tailoi Chan-Ling

We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimers disease. We close by discussing issues that remain to be explored.


Proceedings of the National Academy of Sciences of the United States of America | 2003

d-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors

Eric R. Stevens; Manuel Esguerra; Paul M. Kim; Eric A. Newman; Solomon H. Snyder; Kathleen R. Zahs; Robert F. Miller

d-serine has been proposed as an endogenous modulator of N-methyl-d-aspartate (NMDA) receptors in many brain regions, but its presence and function in the vertebrate retina have not been characterized. We have detected d-serine and its synthesizing enzyme, serine racemase, in the retinas of several vertebrate species, including salamanders, rats, and mice and have localized both constituents to Müller cells and astrocytes, the two major glial cell types in the retina. Physiological studies in rats and salamanders demonstrated that, in retinal ganglion cells, d-serine can enhance excitatory currents elicited by the application of NMDA, as well as the NMDA receptor component of light-evoked synaptic responses. Application of d-amino acid oxidase, which degrades d-serine, reduced the magnitude of NMDA receptor-mediated currents, raising the possibility that endogenous d-serine serves as a ligand for setting the sensitivity of NMDA receptors under physiological conditions. These observations raise exciting new questions about the role of glial cells in regulating the excitability of neurons through release of d-serine.


The Journal of Neuroscience | 2005

Calcium Increases in Retinal Glial Cells Evoked by Light-Induced Neuronal Activity

Eric A. Newman

Electrical stimulation of neurons in brain slices evokes increases in cytoplasmic Ca2+ in neighboring astrocytes. The present study tests whether similar neuron-to-glial signaling occurs in the isolated rat retina in response to light stimulation. Results demonstrate that Müller cells, the principal retinal glial cells, generate transient increases in Ca2+ under constant illumination. A flickering light stimulus increases the occurrence of these Ca2+ transients. Antidromic activation of ganglion cell axons also increases the generation of Müller cell Ca2+ transients. The increases in Ca2+ transients evoked by light and antidromic stimulation are blocked by the purinergic antagonist suramin and by TTX. The addition of adenosine greatly potentiates the response to light, with light ON evoking large Ca2+ increases in Müller cells. Suramin, apyrase (an ATP-hydrolyzing enzyme), and TTX substantially reduce the adenosine-potentiated response. NMDA, metabotropic glutamate, GABAB, and muscarinic receptor antagonists, in contrast, are mainly ineffective in blocking the response. Light-evoked Ca2+ responses begin in Müller cell processes within the inner plexiform (synaptic) layer of the retina and then spread into cell endfeet at the inner retinal surface. These results represent the first demonstration that Ca2+ increases in CNS glia can be evoked by a natural stimulus (light flashes). The results suggest that neuron-to-glia signaling in the retina is mediated by neuronal release of ATP, most likely from amacrine and/or ganglion cells, and that the response is augmented under pathological conditions when adenosine levels increase.

Collaboration


Dive into the Eric A. Newman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo Kofuji

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Anusha Mishra

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Kur

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeb Kurth-Nelson

Wellcome Trust Centre for Neuroimaging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan D. Cohen

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge