Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Postel is active.

Publication


Featured researches published by Eric A. Postel.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


American Journal of Human Genetics | 2006

Cigarette Smoking Strongly Modifies the Association of LOC387715 and Age-Related Macular Degeneration

Silke Schmidt; Michael A. Hauser; William K. Scott; Eric A. Postel; Anita Agarwal; Paul Gallins; Frank Wong; Yu Sarah Chen; Kylee L. Spencer; Nathalie Schnetz-Boutaud; Jonathan L. Haines; Margaret A. Pericak-Vance

We used iterative association mapping to identify a susceptibility gene for age-related macular degeneration (AMD) on chromosome 10q26, which is one of the most consistently implicated linkage regions for this disorder. We employed linkage analysis methods, followed by family-based and case-control association analyses, using two independent data sets. To identify statistically the most likely AMD-susceptibility allele, we used the Genotype-IBD Sharing Test (GIST) and conditional haplotype analysis. To incorporate the two most important known AMD risk factors--smoking and the Y402H variant of the complement factor H gene (CFH)--we used logistic regression modeling to test for gene-gene and gene-environment interactions in the case-control data set and used the ordered-subset analysis to account for genetic linkage heterogeneity in the family-based data set. Our results strongly implicate a coding change (Ala69Ser) in the LOC387715 gene as the second major identified AMD-susceptibility allele, confirming earlier suggestions. This variants effect on AMD is statistically independent of CFH and is of similar magnitude to the effect of Y402H. The overall effect is driven primarily by a strong association in smokers, since we observed significant evidence for a statistical interaction between the LOC387715 variant and a history of cigarette smoking. This gene-environment interaction is supported by statistically independent family-based and case-control analysis methods. We estimate that CFH, LOC387715, and cigarette smoking together explain 61% of the population-attributable risk (PAR) of AMD. The adjusted PAR percentage estimates are 20% for smoking, 36% for LOC387715, and 43% for CFH. We demonstrate, for the first time, that a genetic susceptibility coupled with a modifiable lifestyle factor such as cigarette smoking confers a significantly higher risk of AMD than either factor alone.


American Journal of Human Genetics | 2004

Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions.

Daniel E. Weeks; Yvette P. Conley; Hui Ju Tsai; Tammy S. Mah; Silke Schmidt; Eric A. Postel; Anita Agarwal; Jonathan L. Haines; Margaret A. Pericak-Vance; Philip J. Rosenfeld; T. Otis Paul; Andrew W. Eller; Lawrence S. Morse; J. P. Dailey; Robert E. Ferrell; Michael B. Gorin

Age-related maculopathy (ARM), or age-related macular degeneration, is one of the most common causes of visual impairment in the elderly population of developed nations. In a combined analysis of two previous genomewide scans that included 391 families, containing up to 452 affected sib pairs, we found linkage evidence in four regions: 1q31, 9p13, 10q26, and 17q25. We now have added a third set of families and have performed an integrated analysis incorporating 530 families and up to 736 affected sib pairs. Under three diagnostic models, we have conducted linkage analyses using parametric (heterogeneity LOD [HLOD] scores under an autosomal dominant model) and nonparametric (Sall statistic) methods. There is ongoing evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. If we treat the third set of families as a replication set, then two regions (10q26 and 17q25) are replicated, with LOD scores >1.0. If we pool all our data together, then four regions (1q31, 2q14.3, 10q26, and 17q25) show HLOD or Sall scores > or =2.0. Within the 1q31 region, we observed an HLOD of 2.72 (genomewide P=.061) under our least stringent diagnostic model, whereas the 17q25 region contained a maximal HLOD of 3.53 (genomewide P=.007) under our intermediate diagnostic model. We have evaluated our results with respect to the findings from several new independent genomewide linkage studies and also have completed ordered subset analyses (OSAs) with apolipoprotein E alleles, smoking history, and age at onset as stratifying covariates. The OSAs generate the interesting hypothesis that the effect of smoking on the risk of ARM is accentuated by a gene in the 10q26 region--a region implicated by four other studies.


Retina-the Journal of Retinal and Vitreous Diseases | 2000

Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography.

Ron P. Gallemore; Jumper Jm; McCuen Bw nd; Glenn J. Jaffe; Eric A. Postel; Cynthia A. Toth

Purpose: To compare the relative incidence of vitreoretinal adhesions associated with partial vitreous separation within the macula diagnosed with optical coherence tomography (OCT) with that of those diagnosed with biomicroscopy. Methods: The authors obtained linear cross‐sectional retinal images using OCT in patients with selected macular diseases. Additional studies included biomicroscopy, fundus photography, fluorescein angiography, and B‐scan ultrasonography. Results: Optical coherence tomography was performed on 132 eyes of 119 patients. Vitreoretinal adhesions within the macula were identified using OCT in 39 eyes (30%) with the following diagnoses: idiopathic epiretinal membrane (n = 13), diabetic retinopathy (n = 7), idiopathic macular hole (n = 7), cystoid macular edema (n = 7), and vitreomacular traction syndrome (n = 5). Biomicroscopy identified vitreoretinal adhesions in only 11 eyes (8%). Two distinct vitreoretinal adhesion patterns were identified with OCT, each associated with partial separation of the posterior hyaloid face: focal (n = 25) and multifocal (n = 14). Conclusions: Optical coherence tomography is more sensitive than biomicroscopy in identifying vitreoretinal adhesions associated with macular disease.


American Journal of Ophthalmology | 2001

Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid–gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration☆

Christopher L Haupert; Brooks W. McCuen; Glenn J. Jaffe; Eric R Steuer; Terry A. Cox; Cynthia A. Toth; Sharon Fekrat; Eric A. Postel

PURPOSE To evaluate a new procedure for displacement of large, thick submacular hemorrhage in patients with age-related macular degeneration. METHODS Retrospective review of 11 eyes of 11 patients with age-related macular degeneration and thick submacular hemorrhage (defined as causing retinal elevation detectable on stereo fundus photographs) treated with vitrectomy, subretinal injection of tissue plasminogen activator (25 or 50 microg), and fluid-gas exchange with postoperative prone positioning. Outcome measures included displacement of hemorrhage from the fovea, best postoperative visual acuity, and final postoperative visual acuity. RESULTS In the 11 affected eyes of 11 patients (seven men and four women; mean age, 76 years), preoperative visual acuity ranged from 20/200 to hand motions. With surgery, subretinal hemorrhage was displaced from the fovea in all 11 cases. Mean postoperative follow-up was 6.5 months (range, 1 to 15 months). Best postoperative visual acuity varied from 20/30 to 5/200, with improvement in nine (82%) cases and no change in two cases. Eight eyes (73%) measured 20/200 or better, with four of these eyes (36%) 20/80 or better. Final postoperative visual acuity ranged from 20/70 to light perception, with improvement in eight (73%) cases, no change in one case, and worsening in two cases. A statistically significant difference was found between preoperative and best postoperative visual acuity (P =.004) but not between preoperative and final visual acuity (P =.16). Hemorrhage recurred in three (27%) eyes, causing severe visual loss in one eye. CONCLUSIONS This technique displaces submacular hemorrhage from the fovea and can improve vision in patients with age-related macular degeneration. However, recurrence of hemorrhage occurred in 27% of eyes and caused severe visual loss in one eye. A randomized, prospective clinical trial is necessary to determine the efficacy of this technique in comparison with other proposed treatments.


Ophthalmic Genetics | 2002

A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy

Silke Schmidt; Caroline C. W. Klaver; Ann M. Saunders; Eric A. Postel; Monica A. De La Paz; Anita Agarwal; Kent W. Small; Nitin Udar; John M. Ong; Meenal Chalukya; Anthony B. Nesburn; M. Cristina Kenney; Ruth M. Domurath; Molly T. Hogan; Tammy S. Mah; Yvette P. Conley; Robert E. Ferrell; Daniel E. Weeks; Paulus T. V. M. de Jong; Cornelia M. van Duijn; Jonathan L. Haines; Margaret A. Pericak-Vance; Michael B. Gorin

Age-related maculopathy (ARM) is a multifactorial disorder known to have a substantial genetic component. The e4 allele of the apolipoprotein E gene (APOE-4) has previously been reported to have a protective effect on ARM risk, while the APOE-2 allele may increase disease risk. This study combined four independent data sets (three US and one European) of Caucasian ARM patients and controls in order to obtain better statistical power to examine the role of APOE in ARM. APOE genotype and allele frequencies were compared for 617 ARM cases and 1260 controls, adjusting for age and sex differences between the two groups via multiple logistic regression. The protective effect of the APOE-4 allele on ARM risk was confirmed (age- and sex-adjusted odds ratio (OR) for APOE-4 carriers 0.54, 95% confidence interval (CI) 0.41–0.70, p < 0.0001). The effect of APOE-4 did not differ significantly between males and females and was observed consistently for both atrophic and neovascular ARM. Evidence for an increased risk of ARM due to the APOE-2 allele was found for men, but not for women (OR for men 1.54, 95% CI 0.97–2.45; OR for women 0.74, 95% CI 0.52–1.06, p = 0.01 for interaction of sex and APOE-2 carrier status). These data confirm that the APOE-4 allele, or an allele in linkage disequilibrium with it, reduces the risk of ARM. They also suggest that the effect of the APOE-2 allele may vary by gender, and that APOE-2 may confer an increased risk only to males.


Human Molecular Genetics | 2008

C3 R102G polymorphism increases risk of age-related macular degeneration

Kylee L. Spencer; Lana M. Olson; Brent Anderson; Nathalie Schnetz-Boutaud; William K. Scott; Paul Gallins; Anita Agarwal; Eric A. Postel; Margaret A. Pericak-Vance; Jonathan L. Haines

Inflammation has long been suspected to play a role in the pathogenesis of age-related macular degeneration (AMD). Association of variants in the complement factor H (CFH) and complement factor B (CFB) genes has targeted the search for additional loci to the alternative complement cascade, of which C3 is a major component. Two non-synonymous coding polymorphisms within C3, R102G and L314P, have previously been strongly associated with increased risk. These variants are in strong linkage disequilibrium (LD), making the contribution of this locus to AMD even more difficult to ascertain. We sought to determine whether the C3 association resulted primarily from only one of these two variants or from a combined effect of both in 223 families and an independent dataset of 701 cases and 286 unrelated controls. The C3 polymorphisms were in strong LD (r(2) = 0.85), and both were associated in the family-based and case-control datasets (R102G genoPDT P = 0.02, case-control genotypic P = 0.004; L314P genoPDT P = 0.001, case-control genotypic P = 0.04). In conditional analyses in the case-control dataset, R102G remained associated with disease in the L314P risk allele carriers (P = 0.01), but there was no effect of L314P in the R102G risk allele carriers (P = 0.2). After adjusting for age, smoking, CFH Y402H, LOC387715 A69S, and CFB R32Q, the effect of R102G remained strong [P = 0.015, odds ratio = 1.55, 95% confidence interval 1.09 to 2.21, adjusted PAR(population attributable risk) = 0.17]. Therefore, while the strong LD between R102G and L314P makes it difficult to disentangle their individual effects on disease risk, the R102G polymorphism acting alone provides the best model for disease in our data.


PLOS ONE | 2008

Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration.

Jeffrey A. Canter; Lana M. Olson; Kylee L. Spencer; Nathalie Schnetz-Boutaud; Brent Anderson; Michael A. Hauser; Silke Schmidt; Eric A. Postel; Anita Agarwal; Margaret A. Pericak-Vance; Paul Sternberg; Jonathan L. Haines

The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20–3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms.


Retina-the Journal of Retinal and Vitreous Diseases | 2013

Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device

Paul Hahn; Justin Migacz; Rachelle OʼConnell; Shelley Day; Annie Lee; Phoebe Lin; Robin R. Vann; Anthony N. Kuo; Sharon Fekrat; Prithvi Mruthyunjaya; Eric A. Postel; Joseph A. Izatt; Cynthia A. Toth

Purpose: The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Methods: Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board–approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Results: Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with ≥80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients. Conclusion: This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.


BMC Genetics | 2004

Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12

Silke Schmidt; William K. Scott; Eric A. Postel; Anita Agarwal; Elizabeth R. Hauser; Monica A. De La Paz; John R. Gilbert; Daniel E. Weeks; Michael B. Gorin; Jonathan L. Haines; Margaret A. Pericak-Vance

BackgroundAge-related macular degeneration (AMD) is a complex disorder that is responsible for the majority of central vision loss in older adults living in developed countries. Phenotypic and genetic heterogeneity complicate the analysis of genome-wide scans for AMD susceptibility loci. The ordered subset analysis (OSA) method is an approach for reducing heterogeneity, increasing statistical power for detecting linkage, and helping to define the most informative data set for follow-up analysis. OSA assesses the linkage evidence in subsets of potentially more homogeneous families by rank-ordering family-specific lod scores with respect to trait-associated covariates or phenotypic features. Here, we present results of incorporating five continuous covariates into our genome-wide linkage analysis of 389 microsatellite markers in 62 multiplex families: Body mass index (BMI), systolic (SBP) and diastolic (DBP) blood pressure, intraocular pressure (IOP), and pack-years of cigarette smoking. Chromosome-wide significance of increases in nonparametric multipoint lod scores in covariate-defined subsets relative to the overall sample was assessed by permutation.ResultsUsing a correction for testing multiple covariates, statistically significant lod score increases were observed for two chromosomal regions: 14q13 with a lod score of 3.2 in 28 families with average IOP ≤ 15.5 (p = 0.002), and 6q14 with a lod score of 1.6 in eight families with average BMI ≥ 30.1 (p = 0.0004). On chromosome 16p12, nominally significant lod score increases (p ≤ 0.05), up to a lod score of 2.9 in 32 families, were observed with several covariate orderings. While less significant, this was the only region where linkage evidence was associated with multiple clinically meaningful covariates and the only nominally significant finding when analysis was restricted to advanced forms of AMD. Families with linkage to 16p12 had higher averages of SBP, IOP and BMI and were primarily affected with neovascular AMD. For all three regions, linkage signals at or very near the peak marker have previously been reported.ConclusionOur results suggest that a susceptibility gene on chromosome 16p12 may predispose to AMD, particularly to the neovascular form, and that further research into the previously suggested association of neovascular AMD and systemic hypertension is warranted.

Collaboration


Dive into the Eric A. Postel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge