Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Shelden is active.

Publication


Featured researches published by Eric A. Shelden.


Journal of Biological Chemistry | 2001

Interaction between Pyrin and the Apoptotic Speck Protein (ASC) Modulates ASC-induced Apoptosis

Neil Richards; Philip Schaner; Arturo Diaz; Jeanne A. Stuckey; Eric A. Shelden; Anish Wadhwa; Deborah L. Gumucio

Patients with familial Mediterranean fever suffer sporadic inflammatory attacks characterized by fever and intense pain (in joints, abdomen, or chest). Pyrin, the product of theMEFV locus, is a cytosolic protein whose function is unknown. Using pyrin as a “bait” to probe a yeast two-hybrid library made from neutrophil cDNA, we isolatedapoptotic speck protein containing a caspase recruitment domain (CARD) (ASC), a proapoptotic protein that induces the formation of large cytosolic “specks” in transfected cells. We found that when HeLa cells are transfected with ASC, specks are formed. After co-transfection of cells with ASC plus wild type pyrin, an increase in speck-positive cells is found, and speck-positive cells show increased survival. Immunofluorescence studies show that pyrin co-localizes with ASC in specks. Speck localization requires exon 1 of pyrin, but exon 1 alone of pyrin does not result in an increase in the number of specks. Exon 1 of pyrin and exon 1 of ASC show 42% sequence similarity and resemble death domain-related structures in modeling studies. These findings link pyrin to apoptosis pathways and suggest that the modulation of cell survival may be a component of the pathophysiology of familial Mediterranean fever.


Journal of Clinical Investigation | 2001

Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis

Yoshitaka Morita; Jianmin Yang; Raj K. Gupta; Koichi Shimizu; Eric A. Shelden; Judith Endres; James J. Mulé; Kevin T. McDonagh; David A. Fox

Dendritic cells (DCs) are specialized antigen-presenting cells that migrate from the periphery to lymphoid tissues, where they activate and regulate T cells. Genetic modification of DCs to express immunoregulatory molecules would provide a new immunotherapeutic strategy for autoimmune and other diseases. We have engineered bone marrow-derived DCs that express IL-4 and tested the ability of these cells to control murine collagen-induced arthritis (CIA), a model for rheumatoid arthritis in which Th1 cells play a critical role. IL-4-transduced DCs inhibited Th1 responses to collagen type II in vitro. A single injection of IL-4-transduced DCs reduced the incidence and severity of CIA and suppressed established Th1 responses and associated humoral responses, despite only transient persistence of injected DCs in the spleen. In contrast, control DCs and IL-4-transduced T cells or fibroblastic cells failed to alter the course of the disease. The functional effects correlated well with the differential efficiency of DC migration from various sites of injection to lymphoid organs, especially the spleen. The ability of splenic T cells to produce IL-4 in response to anti-CD3 was enhanced after the administration of IL-4-transduced DCS: These results support the feasibility of using genetically modified DCs for the treatment of autoimmune disease.


Journal of Immunology | 2002

The Apoptotic Ligands TRAIL, TWEAK, and Fas Ligand Mediate Monocyte Death Induced by Autologous Lupus T Cells

Mariana J. Kaplan; Emily E. Lewis; Eric A. Shelden; Emily C. Somers; Robert Pavlic; William J. McCune; Bruce C. Richardson

Individuals with systemic lupus erythematosus show evidence of a significant increase in monocyte apoptosis. This process is mediated, at least in part, by an autoreactive T cell subset that kills autologous monocytes in the absence of nominal Ag. We have investigated the apoptotic pathways involved in this T cell-mediated process. Expression of the apoptotic ligands TRAIL, TNF-like weak inducer of apoptosis (TWEAK), and Fas ligand on lupus T cells was determined, and the role of these molecules in the monocyte apoptotic response was examined. We report that these apoptotic ligands mediate the autologous monocyte death induced by lupus T cells and that this cytotoxicity is associated with increased expression of these molecules on activated T cells, rather than with an increased susceptibility of lupus monocytes to apoptosis induced by these ligands. These results define novel mechanisms that contribute to increased monocyte apoptosis characterizing patients with lupus. We propose that this mechanism could provide a source of potentially antigenic material for the autoimmune response and interfere with normal clearing mechanisms.


Journal of Biological Chemistry | 1997

TYROSINE PHOSPHORYLATION OF PAXILLIN AND FOCAL ADHESION KINASE DURING INSULIN-LIKE GROWTH FACTOR-I-STIMULATED LAMELLIPODIAL ADVANCE

Phillip S. Leventhal; Eric A. Shelden; Bhumsoo Kim; Eva L. Feldman

In the current studies, we examined whether focal adhesion kinase (FAK) and paxillin play a role in insulin-like growth factor-I (IGF-I)-stimulated morphological changes in neuronal cells. In SH-SY5Y human neuroblastoma cells, 10 nM IGF-I enhanced the extension of lamellipodia within 30 min. Scanning electron microscopy and staining with rhodamine-phalloidin showed that these lamellipodia displayed ruffles, filopodia, and a distinct meshwork of actin filaments. Immunofluorescent staining identified focal concentrations of FAK, paxillin, and phosphotyrosine within the lamellipodia. Immunoprecipitation experiments revealed that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial extension. Maximal phosphorylation of FAK and paxillin was observed 15-30 min after the addition of 10 nM IGF-I, whereas maximal IGF-I receptor phosphorylation occurred within 5 min. FAK, paxillin, and IGF-I receptor tyrosine phosphorylation had similar concentration-response curves and were inhibited by the receptor blocking antibody αIR-3. These results indicate that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial advance and suggest that the tyrosine phosphorylation of these two proteins helps mediate IGF-I-stimulated cell and growth cone motility. These responses contrast directly with recent reports showing insulin-stimulated dephosphorylation of FAK and paxillin.


Journal of Biological Chemistry | 2004

Interaction of Human HSP22 (HSPB8) with Other Small Heat Shock Proteins

Xiankui Sun; Jean-Marc Fontaine; Joshua S. Rest; Eric A. Shelden; Michael J. Welsh; Rainer Benndorf

Mammalian small heat shock proteins (sHSP) are abundant in muscles and are implicated in both muscle function and myopathies. Recently a new sHSP, HSP22 (HSPB8, H11), was identified in the human heart by its interaction with HSP27 (HSPB1). Using phylogenetic analysis we show that HSP22 is a true member of the sHSP superfamily. sHSPs interact with each other and form homo- and hetero-oligomeric complexes. The function of these complexes is poorly understood. Using gel filtration HPLC, the yeast two-hybrid method, immunoprecipitation, cross-linking, and fluorescence resonance energy transfer microscopy, we report that (i) HSP22 forms high molecular mass complexes in the heart, (ii) HSP22 interacts with itself, cvHSP (HSPB7), MKBP (HSPB2) and HSP27, and (iii) HSP22 has two binding domains (N- and C-terminal) that are specific for different binding partners. HSP22 homo-dimers are formed through N-N and N-C interactions, and HSP22-cvHSP hetero-dimers through C-C interaction. HSP22-MKBP and HSP22-HSP27 hetero-dimers involve the N and C termini of HSP22 and HSP27, respectively, but appear to require full-length protein as a binding partner.


Oncogene | 2001

Insulin-like growth factor I stimulates motility in human neuroblastoma cells.

Gary Meyer; Eric A. Shelden; Bhumsoo Kim; Eva L. Feldman

Motility is an important process that contributes to cancer cell spread. Growth factors are key regulators of motility in many cell types. Insulin-like growth factor I (IGF-I) causes SH-SY5Y human neuroblastoma cells to undergo dynamic morphological changes, leading to the extension of lamellipodia. IGF-I stimulated lamellipodia extension requires signaling through both phosphatidylinositol 3-kinase (PI3-K) and MAP kinase pathways. IGF-I, over a period of hours, stimulates SH-SY5Y and SHEP neuroblastoma cells to become more motile. While SH-SY5Y and SHEP cells use different insulin receptor substrate (IRS) isoforms to transduce signals from the IGF-I receptor, IGF-I has the same relative effect on the motility of both cell lines. Blocking the PI3-K and MAP kinase pathways attenuates the ability of IGF-I to increase motility. Overexpression of PTEN also attenuates IGF-I mediated motility. These results delineate some of the proximal events in the signaling mechanism utilized by IGF-I to stimulate cell motility.


Toxicology and Applied Pharmacology | 2003

Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium.

Rita T Bonham; Michael R Fine; Fiona M. Pollock; Eric A. Shelden

Cadmium is a widely distributed industrial and environmental toxin. The principal target organ of chronic sublethal cadmium exposure is the kidney. In renal epithelial cells, acute high-dose cadmium exposure induces differential expression of proteins, including heat shock proteins. However, few studies have examined heat shock protein expression in cells after prolonged exposure to cadmium at sublethal concentrations. Here, we assayed total cell protein, neutral red uptake, cell death, and levels of metallothionein and heat shock proteins Hsp27 and inducible Hsp70 in cultures of MDCK and LLC-PK1 renal epithelial cells treated with cadmium for 3 days. Treatment with cadmium at concentrations equal to or greater than 10 microM (LLC-PK1) or 25 microM (MDCK) reduced measures of cell vitality and induced cell death. However, a concentration-dependent increase in Hsp27 was detected in both cell types treated with as little as 5 microM cadmium. Accumulation of Hsp70 was correlated only with cadmium treatment at concentrations also causing cell death. Metallothionein was maximally detected in cells treated with cadmium at concentrations that did not reduce cell vitality, and further increases were not detected at greater concentrations. These results reveal that heat shock proteins accumulate in renal epithelial cells during prolonged cadmium exposure, that cadmium induces differential expression of heat shock protein in epithelial cells, and that protein expression patterns in epithelial cells are specific to the cadmium concentration and degree of cellular injury. A potential role for Hsp27 in the cellular response to sublethal cadmium-induced injury is also implicated by our results.


Cell Stress & Chaperones | 2004

HSP27 regulates fibroblast adhesion, motility, and matrix contraction

Sahoko Hirano; Eric A. Shelden; Robert R. Gilmont

Abstract Heat shock protein 27 (HSP27) modulates actin-dependent cell functions in several systems. We hypothesized that HSP27 modulates wound contraction. Stably transfected fibroblast cell lines that overexpress HSP27 (SS12) or underexpress HSP27 (AS10) were established, and cell behaviors related to wound contraction were examined. First, fibroblast-populated collagen lattice (FPCL) contraction was examined because it has been studied as a wound-healing model. In floating FPCL contraction assays, SS12 cells caused increased contraction, whereas AS10 cells caused reduced contraction. Because floating matrix contraction is thought to be mediated by the tractional force of the cells, cell behaviors related to tractional force were examined. In collagen matrix, SS12 cells elongated faster and to a greater extent and contained longer stress fibers than control cells, whereas AS10 cells were slower to elongate than control cells. SS12 cells attached to the dishes more efficiently than the control, whereas AS10 cells attached less efficiently. Migration of SS12 cells on collagen-coated dishes was also enhanced, although AS10 cells did not differ from the control cells. In summary, HSP27 regulates fibroblast adhesion, elongation, and migration and the contraction of the floating matrix in a manner dependent on the level of its expression.


Journal of The American Society of Nephrology | 2002

Site-Specific Alteration of Actin Assembly Visualized in Living Renal Epithelial Cells during ATP Depletion

Eric A. Shelden; Joel M. Weinberg; Dorothy R. Sorenson; Chris A. Edwards; Fiona M. Pollock

Disruption of normal actin organization in renal tubular epithelial cells is an important element of renal injury induced by ischemia. Studies of fixed cells indicate that the cytoskeleton is disrupted by both ischemia and ATP depletion in a site-specific manner. However, few studies have examined these effects in living cells, and the relationship between the time course of ATP reduction and alteration of the cytoskeleton remains unclear. Here, time-lapse video images of cultured renal epithelial cells expressing an enhanced green fluorescent protein (EGFP)-actin fusion protein were obtained, and the kinetics of fluorescence actin distribution before and during ATP depletion is quantified and compared with measured ATP levels. This study found that assembly of lamellar actin is inhibited rapidly as cellular ATP levels are reduced, whereas disruption of actin in stress fibers is more gradual and persistent. Actin associated with focal adhesions is largely resistant to ATP depletion in these experiments, and, consistent with previous studies, particulate aggregates of actin were formed within the cytoplasm of ATP-depleted cells. Most surprisingly, time-lapse imaging of EGFP-actin distribution, quantitative fluorescence imaging of phalloidin-stained cells, and ultrastructural studies indicate that assembly of actin filaments occurs at sites of epithelial cell-cell attachment in ATP-depleted cells. This assembly is initiated early during ATP depletion and continues after ATP levels are maximally reduced. Assembly of actin at sites of cell-cell attachment may be an element of the pathology of injury induced by ischemia, or alternatively, could reflect the function of a protective mechanism. These studies directly demonstrate site-specific alteration of actin assembly in living epithelial cells during ATP depletion. The results also reveal that actin reorganization continues after ATP levels are maximally decreased and that epithelial cell-cell attachments are sites of actin assembly in ATP-depleted cells.


Molecular Endocrinology | 2010

Luteinizing Hormone Receptor-Stimulated Progesterone Production by Preovulatory Granulosa Cells Requires Protein Kinase A-Dependent Activation/Dephosphorylation of the Actin Dynamizing Protein Cofilin

Amelia B. Karlsson; Evelyn T. Maizels; Maxfield P. Flynn; Jonathan C. R. Jones; Eric A. Shelden; James R. Bamburg; Mary Hunzicker-Dunn

Activation of the LH receptor (LHR) on preovulatory granulosa cells stimulates the cAMP/protein kinase A (PKA) pathway to regulate expression of genes required for ovulation and luteinization. LHR signaling also initiates rearrangement of the actin cytoskeleton. Because disruption of the actin cytoskeleton has been causally linked to steroidogenesis in various cell models, we sought to identify the cellular mechanisms that may modulate reorganization of the actin cytoskeleton and to determine whether cytoskeletal reorganization is required for steroidogenesis. Herein we report that LHR signaling in preovulatory granulosa cells promotes rapid dephosphorylation of the actin-depolymerizing factor cofilin at Ser3 that is dependent on PKA. The LHR-stimulated dephosphorylation of cofilin(Ser3) switches on cofilin activity to bind actin filaments and enhance their dynamics. Basal phosphorylation of cofilin(Ser3) is mediated by active/GTP-bound Rho and downstream protein kinases; LHR signaling promotes a decrease in active/GTP-bound Rho by a PKA-dependent mechanism. LHR-dependent Rho inactivation and subsequent activation of cofilin does not involve ERK, epidermal growth factor receptor, or phosphatidylinositol 3-kinase pathways downstream of PKA. To understand the biological significance of cofilin activation, preovulatory granulosa cells were transduced with a mutant cofilin adenoviral vector in which Ser3 was mutated to Glu (S-E cofilin). Inactive S-E cofilin abolished LHR-mediated reorganization of the actin cytoskeleton and caused a 70% decrease in LHR-stimulated progesterone that is obligatory for ovulation. Taken together, these results show that LHR signaling via PKA activates a cofilin-regulated rearrangement of the actin cytoskeleton and that active cofilin is required to initiate progesterone secretion by preovulatory granulosa cells.

Collaboration


Dive into the Eric A. Shelden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan R. Tucker

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Bhumsoo Kim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Knecht

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge