Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Toth is active.

Publication


Featured researches published by Eric A. Toth.


Journal of Biological Chemistry | 2007

Specific Protein Domains Mediate Cooperative Assembly of HuR Oligomers on AU-rich mRNA-destabilizing Sequences

Elizabeth J. Fialcowitz-White; Brandy Y. Brewer; Jeff D. Ballin; Chris D. Willis; Eric A. Toth; Gerald M. Wilson

The RNA-binding factor HuR is a ubiquitously expressed member of the Hu protein family that binds and stabilizes mRNAs containing AU-rich elements (AREs). Hu proteins share a common domain organization of two tandemly arrayed RNA recognition motifs (RRMs) near the N terminus, followed by a basic hinge domain and a third RRM near the C terminus. In this study, we engineered recombinant wild-type and mutant HuR proteins lacking affinity tags to characterize their ARE-binding properties. Using combinations of electrophoretic mobility shift and fluorescence anisotropy-based binding assays, we show that HuR can bind ARE substrates as small as 13 nucleotides with low nanomolar affinity, but forms cooperative oligomeric protein complexes on ARE substrates of at least 18 nucleotides in length. Analyses of deletion mutant proteins indicated that RRM3 does not contribute to high affinity recognition of ARE substrates, but is required for cooperative assembly of HuR oligomers on RNA. Finally, the hinge domain between RRM2 and RRM3 contributes significant binding energy to HuR·ARE complex formation in an ARE length-dependent manner. The hinge does not enhance RNA-binding activity by increased ion pair formation despite extensive positive charge within this region, and it does not thermodynamically stabilize protein folding. Together, the results define distinct roles for the HuR hinge and RRM3 domains in formation of cooperative HuR·ARE complexes in solution.


Journal of Biological Chemistry | 2008

Characterization of the essential activities of Saccharomyces cerevisiae Mtr4p, A 3' 5' helicase partner of the nuclear exosome

Jade Bernstein; Dimeka N. Patterson; Gerald M. Wilson; Eric A. Toth

Mtr4p belongs to the Ski2p family of DEVH-box containing proteins and is required for processing and degradation of a variety of RNA substrates in the nucleus. In particular, Mtr4p is required for creating the 5.8 S ribosomal RNA from its 7 S precursor, proper 3′-end processing of the U4 small nuclear RNA and some small nucleolar RNAs, and degradation of aberrant mRNAs and tRNAs. In these studies we have shown that Mtr4p has RNA-dependent ATPase (or dATPase) activity that is stimulated effectively by likely substrates (e.g. tRNA) but surprisingly weakly by poly(A). Using an RNA strand-displacement assay, we have demonstrated that Mtr4p can, in the presence of ATP or dATP, unwind the duplex region of a partial duplex RNA substrate in the 3′→5′ direction. We have examined the ability of Mtr4p to bind model RNA substrates in the presence of nucleotides that mimic the stages (i.e. ATP-bound, ADP-bound, and nucleotide-free) of the unwinding reaction. Our results demonstrate that the presence of a non-hydrolyzable ATP analog allows Mtr4p to discriminate between partial duplex RNA substrates, binding a 3′-tailed substrate with 5-fold higher affinity than a 5′-tailed substrate. In addition, Mtr4p displays a marked preference for binding to poly(A) RNA relative to an oligoribonucleotide of the same length and a random sequence. This binding exhibits apparent cooperativity and different dynamic behavior from binding to the random single-stranded RNA. This unique binding mode might be employed primarily for degradation.


Journal of Biological Chemistry | 2010

Alternatively expressed domains of AU-rich element RNA- binding protein 1 (AUF1) regulate RNA-binding affinity, RNA-induced protein oligomerization, and the local conformation of bound RNA ligands

Beth E. Zucconi; Jeff D. Ballin; Brandy Y. Brewer; Christina R. Ross; Jun Huang; Eric A. Toth; Gerald M. Wilson

AU-rich element RNA-binding protein 1 (AUF1) binding to AU-rich elements (AREs) in the 3′-untranslated regions of mRNAs encoding many cytokines and other regulatory proteins modulates mRNA stability, thereby influencing protein expression. AUF1-mRNA association is a dynamic paradigm directed by various cellular signals, but many features of its function remain poorly described. There are four isoforms of AUF1 that result from alternative splicing of exons 2 and 7 from a common pre-mRNA. Preliminary evidence suggests that the different isoforms have varied functional characteristics, but no detailed quantitative analysis of the properties of each isoform has been reported despite their differential expression and regulation. Using purified recombinant forms of each AUF1 protein variant, we used chemical cross-linking and gel filtration chromatography to show that each exists as a dimer in solution. We then defined the association mechanisms of each AUF1 isoform for ARE-containing RNA substrates and quantified relevant binding affinities using electrophoretic mobility shift and fluorescence anisotropy assays. Although all AUF1 isoforms generated oligomeric complexes on ARE substrates by sequential dimer association, sequences encoded by exon 2 inhibited RNA-binding affinity. By contrast, the exon 7-encoded domain enhanced RNA-dependent protein oligomerization, even permitting cooperative RNA-binding activity in some contexts. Finally, fluorescence resonance energy transfer-based assays showed that the different AUF1 isoforms remodel bound RNA substrates into divergent structures as a function of protein:RNA stoichiometry. Together, these data describe isoform-specific characteristics among AUF1 ribonucleoprotein complexes, which likely constitute a mechanistic basis for differential functions and regulation among members of this protein family.


Journal of Molecular Biology | 2008

Divalent metal ion complexes of S100B in the absence and presence of pentamidine.

Thomas H. Charpentier; Paul T. Wilder; Melissa A. Liriano; Kristen M. Varney; Edwin Pozharski; Alexander D. MacKerell; Andrew Coop; Eric A. Toth; David J. Weber

As part of an effort to inhibit S100B, structures of pentamidine (Pnt) bound to Ca(2+)-loaded and Zn(2+),Ca(2+)-loaded S100B were determined by X-ray crystallography at 2.15 A (R(free)=0.266) and 1.85 A (R(free)=0.243) resolution, respectively. These data were compared to X-ray structures solved in the absence of Pnt, including Ca(2+)-loaded S100B and Zn(2+),Ca(2+)-loaded S100B determined here (1.88 A; R(free)=0.267). In the presence and absence of Zn(2+), electron density corresponding to two Pnt molecules per S100B subunit was mapped for both drug-bound structures. One Pnt binding site (site 1) was adjacent to a p53 peptide binding site on S100B (+/-Zn(2+)), and the second Pnt molecule was mapped to the dimer interface (site 2; +/-Zn(2+)) and in a pocket near residues that define the Zn(2+) binding site on S100B. In addition, a conformational change in S100B was observed upon the addition of Zn(2+) to Ca(2+)-S100B, which changed the conformation and orientation of Pnt bound to sites 1 and 2 of Pnt-Zn(2+),Ca(2+)-S100B when compared to Pnt-Ca(2+)-S100B. That Pnt can adapt to this Zn(2+)-dependent conformational change was unexpected and provides a new mode for S100B inhibition by this drug. These data will be useful for developing novel inhibitors of both Ca(2+)- and Ca(2+),Zn(2+)-bound S100B.


Journal of Molecular Biology | 2010

A structural hinge in eukaryotic MutY homologues mediates catalytic activity and Rad9-Rad1-Hus1 checkpoint complex interactions.

Paz J. Luncsford; Dau-Yin Chang; Guoli Shi; Jade Bernstein; Amrita Madabushi; Dimeka N. Patterson; A-Lien Lu; Eric A. Toth

The DNA glycosylase MutY homologue (MYH or MUTYH) removes adenines misincorporated opposite 8-oxoguanine as part of the base excision repair pathway. Importantly, defects in human MYH (hMYH) activity cause the inherited colorectal cancer syndrome MYH-associated polyposis. A key feature of MYH activity is its coordination with cell cycle checkpoint via interaction with the Rad9-Rad1-Hus1 (9-1-1) complex. The 9-1-1 complex facilitates cell cycle checkpoint activity and coordinates this activity with ongoing DNA repair. The interdomain connector (IDC, residues 295-350) between the catalytic domain and the 8-oxoguanine recognition domain of hMYH is a critical element that maintains interactions with the 9-1-1 complex. We report the first crystal structure of a eukaryotic MutY protein, a fragment of hMYH (residues 65-350) that consists of the catalytic domain and the IDC. Our structure reveals that the IDC adopts a stabilized conformation projecting away from the catalytic domain to form a docking scaffold for 9-1-1. We further examined the role of the IDC using Schizosaccharomyces pombe MYH as model system. In vitro studies of S. pombe MYH identified residues I261 and E262 of the IDC (equivalent to V315 and E316 of the hMYH IDC) as critical for maintaining the MYH/9-1-1 interaction. We determined that the eukaryotic IDC is also required for DNA damage selection and robust enzymatic activity. Our studies also provide the first evidence that disruption of the MYH/9-1-1 interaction diminishes the repair of oxidative DNA damage in vivo. Thus, preserving the MYH/9-1-1 interaction contributes significantly to minimizing the mutagenic potential of oxidative DNA damage.


Journal of Molecular Biology | 2010

The effects of CapZ peptide (TRTK-12) binding to S100B-Ca2+ as examined by NMR and X-ray crystallography.

Thomas H. Charpentier; Laura E. Thompson; Melissa A. Liriano; Kristen M. Varney; Paul T. Wilder; Edwin Pozharski; Eric A. Toth; David J. Weber

Structure-based drug design is underway to inhibit the S100B-p53 interaction as a strategy for treating malignant melanoma. X-ray crystallography was used here to characterize an interaction between Ca(2)(+)-S100B and TRTK-12, a target that binds to the p53-binding site on S100B. The structures of Ca(2+)-S100B (1.5-A resolution) and S100B-Ca(2)(+)-TRTK-12 (2.0-A resolution) determined here indicate that the S100B-Ca(2+)-TRTK-12 complex is dominated by an interaction between Trp7 of TRTK-12 and a hydrophobic binding pocket exposed on Ca(2+)-S100B involving residues in helices 2 and 3 and loop 2. As with an S100B-Ca(2)(+)-p53 peptide complex, TRTK-12 binding to Ca(2+)-S100B was found to increase the proteins Ca(2)(+)-binding affinity. One explanation for this effect was that peptide binding introduced a structural change that increased the number of Ca(2+) ligands and/or improved the Ca(2+) coordination geometry of S100B. This possibility was ruled out when the structures of S100B-Ca(2+)-TRTK-12 and S100B-Ca(2+) were compared and calcium ion coordination by the protein was found to be nearly identical in both EF-hand calcium-binding domains (RMSD=0.19). On the other hand, B-factors for residues in EF2 of Ca(2+)-S100B were found to be significantly lowered with TRTK-12 bound. This result is consistent with NMR (15)N relaxation studies that showed that TRTK-12 binding eliminated dynamic properties observed in Ca(2+)-S100B. Such a loss of protein motion may also provide an explanation for how calcium-ion-binding affinity is increased upon binding a target. Lastly, it follows that any small-molecule inhibitor bound to Ca(2+)-S100B would also have to cause an increase in calcium-ion-binding affinity to be effective therapeutically inside a cell, so these data need to be considered in future drug design studies involving S100B.


Molecular and Cellular Biology | 2013

Hsp70 Is a Novel Posttranscriptional Regulator of Gene Expression That Binds and Stabilizes Selected mRNAs Containing AU-Rich Elements

Aparna Kishor; Bishal Tandukar; Yann V. Ly; Eric A. Toth; Yvelisse Suarez; Gary Brewer; Gerald M. Wilson

ABSTRACT The AU-rich elements (AREs) encoded within many mRNA 3′ untranslated regions (3′UTRs) are targets for factors that control transcript longevity and translational efficiency. Hsp70, best known as a protein chaperone with well-defined peptide-refolding properties, is known to interact with ARE-like RNA substrates in vitro. Here, we show that cofactor-free preparations of Hsp70 form direct, high-affinity complexes with ARE substrates based on specific recognition of U-rich sequences by both the ATP- and peptide-binding domains. Suppressing Hsp70 in HeLa cells destabilized an ARE reporter mRNA, indicating a novel ARE-directed mRNA-stabilizing role for this protein. Hsp70 also bound and stabilized endogenous ARE-containing mRNAs encoding vascular endothelial growth factor (VEGF) and Cox-2, which involved a mechanism that was unaffected by an inhibitor of its protein chaperone function. Hsp70 recognition and stabilization of VEGF mRNA was mediated by an ARE-like sequence in the proximal 3′UTR. Finally, stabilization of VEGF mRNA coincided with the accumulation of Hsp70 protein in HL60 promyelocytic leukemia cells recovering from acute thermal stress. We propose that the binding and stabilization of selected ARE-containing mRNAs may contribute to the cytoprotective effects of Hsp70 following cellular stress but may also provide a novel mechanism linking constitutively elevated Hsp70 expression to the development of aggressive neoplastic phenotypes.


The International Journal of Biochemistry & Cell Biology | 2013

A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization.

Yalcin Erzurumlu; Fadime Aydin Kose; Oguz Gozen; Devrim Gozuacik; Eric A. Toth; Petek Ballar

p97/VCP is a hexameric AAA type ATPase that functions in a variety of cellular processes such as endoplasmic reticulum associated degradation (ERAD), organelle biogenesis, autophagy and cell-cycle regulation. Inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder which has been attributed to mutations in p97/VCP. Several missense mutations affecting twelve different amino acids have been identified in IBMPFD patients and some of them were suggested to be involved in the observed pathology. Here, we analyzed the effect of all twelve p97/VCP variants on ERAD substrates and their cofactor binding abilities. While all mutants cause ERAD substrate accumulation, P137L mutant p97/VCP differs from other IBMPFD mutants by having a unique solubility profile and subcellular localization. Intriguingly, although almost all mutants exhibit enhanced p47 and Ufd1-Npl4 binding, the P137L mutation completely abolishes p97/VCP interactions with Ufd1, Npl4 and p47, while retaining its gp78 binding. While recombinant R155C mutant protein consistently interacts with both Ufd1 and VIM of gp78, P137L mutant protein lost binding ability to Ufd1 but not to VIM in vitro. The differential impairments in p97/VCP interactions with its functional partners and function should help our understanding of the molecular pathogenesis of IBMPFD.


Biochemistry | 2009

Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography.

Thomas H. Charpentier; Paul T. Wilder; Melissa A. Liriano; Kristen M. Varney; Shijun Zhong; Andrew Coop; Edwin Pozharski; Alexander D. MacKerell; Eric A. Toth; David J. Weber

Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.


Biochemistry | 2013

Structural and Functional Analysis of the Pro-Domain of Human Cathelicidin, LL-37.

Marzena Pazgier; Bryan Ericksen; Minhua Ling; Eric A. Toth; Jishu Shi; Xiangdong Li; Amy Galliher-Beckley; Liqiong Lan; Guozhang Zou; Changyou Zhan; Weirong Yuan; Edwin Pozharski; Wuyuan Lu

Cathelicidins form a family of small host defense peptides distinct from another class of cationic antimicrobial peptides, the defensins. They are expressed as large precursor molecules with a highly conserved pro-domain known as the cathelin-like domain (CLD). CLDs have high degrees of sequence homology to cathelin, a protein isolated from pig leukocytes and belonging to the cystatin family of cysteine protease inhibitors. In this report, we describe for the first time the X-ray crystal structure of the human CLD (hCLD) of the sole human cathelicidin, LL-37. The structure of the hCLD, determined at 1.93 Å resolution, shows the cystatin-like fold and is highly similar to the structure of the CLD of the pig cathelicidin, protegrin-3. We assayed the in vitro antibacterial activities of the hCLD, LL-37, and the precursor form, pro-cathelicidin (also known as hCAP18), and we found that the unprocessed protein inhibited the growth of Gram-negative bacteria with efficiencies comparable to that of the mature peptide, LL-37. In addition, the antibacterial activity of LL-37 was not inhibited by the hCLD intermolecularly, because exogenously added hCLD had no effect on the bactericidal activity of the mature peptide. The hCLD itself lacked antimicrobial function and did not inhibit the cysteine protease, cathepsin L. Our results contrast with previous reports of hCLD activity. A comparative structural analysis between the hCLD and the cysteine protease inhibitor stefin A showed why the hCLD is unable to function as an inhibitor of cysteine proteases. In this respect, the cystatin scaffold represents an ancestral structural platform from which proteins evolved divergently, with some losing inhibitory functions.

Collaboration


Dive into the Eric A. Toth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Coop

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge