Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Weaver is active.

Publication


Featured researches published by Eric A. Weaver.


Current Gene Therapy | 2011

Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

Reeti Khare; Christopher Y. Chen; Eric A. Weaver; Michael A. Barry

Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect.


Molecular Therapy | 2008

Modification of adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene expression

Sean Hofherr; Elena V. Shashkova; Eric A. Weaver; Reeti Khare; Michael A. Barry

Polyethylene glycol (PEG) is a hydrophilic polymer that has been used to coat adenoviral (Ad) vectors to improve their pharmacology. To analyze the effects of PEG on Ad5 tropism, Ad5 was covalently modified with different sizes of PEG and in vitro and in vivo transduction was analyzed. All tested PEGs ablated in vitro transduction. When protein C (PC) and factors VII, IX, and X were added, only factors IX and X increased transduction by the PEGylated vectors with the largest effect by X. Inactivation of these factors with warfarin drastically reduced liver transduction in mice by the PEGylated vectors after intravenous (i.v.) injection. Ad5 conjugated with 5 kd PEG maintained normal liver transduction while conjugation with larger 20 and 35 kd PEGs significantly reduced liver transduction. When intraperitoneal (i.p.) injection was tested, Ad transduced the peritoneum efficiently with only low level liver transduction. When Ad5 was modified with 5 kd PEG, peritoneal transduction was reduced and the virus preferentially transduced the liver. These data demonstrate the effects of different sizes of PEG on in vivo Ad tropism and suggest that this approach may be useful in retargeting and detargeting Ad in vivo.


Molecular Therapy | 2011

Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

Reeti Khare; Shannon M. May; Francesco Vetrini; Eric A. Weaver; Donna Palmer; Amanda Rosewell; Nathan Grove; Philip Ng; Michael A. Barry

As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies.


PLOS ONE | 2009

Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines

Eric A. Weaver; Pramod N. Nehete; Stephanie S. Buchl; Julien S. Senac; Donna Palmer; Philip Ng; K. Jagannadha Sastry; Michael A. Barry

All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines.


PLOS ONE | 2011

Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin.

Eric A. Weaver; Adam Rubrum; Richard J. Webby; Michael A. Barry

Influenza poses a persistent worldwide threat to the human population. As evidenced by the 2009 H1N1 pandemic, current vaccine technologies are unable to respond rapidly to this constantly diverging pathogen. We tested the utility of adenovirus (Ad) vaccines expressing centralized consensus influenza antigens. Ad vaccines were produced within 2 months and protected against influenza in mice within 3 days of vaccination. Ad vaccines were able to protect at doses as low as 107 virus particles/kg indicating that approximately 1,000 human doses could be rapidly generated from standard Ad preparations. To generate broadly cross-reactive immune responses, centralized consensus antigens were constructed against H1 influenza and against H1 through H5 influenza. Twenty full-length H1 HA sequences representing the main branches of the H1 HA phylogenetic tree were used to create a synthetic centralized gene, HA1-con. HA1-con minimizes the degree of sequence dissimilarity between the vaccine and existing circulating viruses. The centralized H1 gene, HA1-con, induced stronger immune responses and better protection against mismatched virus challenges as compared to two wildtype H1 genes. HA1-con protected against three genetically diverse lethal influenza challenges. When mice were challenged with 1934 influenza A/PR/8/34, HA1-con protected 100% of mice while vaccine generated from 2009 A/TX/05/09 only protected 40%. Vaccination with 1934 A/PR/8/34 and 2009 A/TX/05/09 protected 60% and 20% against 1947 influenza A/FM/1/47, respectively, whereas 80% of mice vaccinated with HA1-con were protected. Notably, 80% of mice challenged with 2009 swine flu isolate A/California/4/09 were protected by HA1-con vaccination. These data show that HA1-con in Ad has potential as a rapid and universal vaccine for H1N1 influenza viruses.


The FASEB Journal | 2012

Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice

Nathan W. Cummins; Eric A. Weaver; Shannon M. May; Anthony J. Croatt; Oded Foreman; Richard B. Kennedy; Gregory A. Poland; Michael A. Barry; Karl A. Nath; Andrew D. Badley

Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase‐1 (HO‐1) expression on vaccine response and outcome of influenza infection. HO‐1‐deficient and wild‐type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adeno‐viral‐based influenza vaccine. A genome‐wide association study evaluated the expression of single‐nucleotide polymorphisms (SNPs) in the HO‐1 gene and the response to influenza vaccination in healthy humans. HO‐1‐deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO‐1‐deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO‐1 and one SNP in the constitutively expressed isoform HO‐2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO‐1 deficient mice were paired with sex‐ and age‐matched WT controls. HO‐1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO‐1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness.—Cummins, N. W., Weaver, E. A., May, S. M., Croatt, A. J., Foreman, O., Kennedy, R. B., Poland, G. A., Barry, M. A., Nath, K. A., Badley, A. D. Heme oxygenase‐1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J. 26, 2911–2918 (2012). www.fasebj.org


Viruses | 2009

Protection against Mucosal SHIV Challenge by Peptide and Helper-Dependent Adenovirus Vaccines

Eric A. Weaver; Pramod N. Nehete; Bharti P. Nehete; Stephanie J. Buchl; Donna Palmer; David C. Montefiori; Philip Ng; K. Jagannadha Sastry; Michael A. Barry

Groups of rhesus macaques that had previously been immunized with HIV-1 envelope (env) peptides and first generation adenovirus serotype 5 (FG-Ad5) vaccines expressing the same peptides were immunized intramuscularly three times with helper-dependent adenovirus (HD-Ad) vaccines expressing only the HIV-1 envelope from JRFL. No gag, pol, or other SHIV genes were used for vaccination. One group of the FG-Ad5-immune animals was immunized three times with HD-Ad5 expressing env. One group was immunized by serotype-switching with HD-Ad6, HD-Ad1, and HD-Ad2 expressing env. Previous work demonstrated that serum antibody levels against env were significantly higher in the serotype-switched group than in the HD-Ad5 group. In this study, neutralizing antibody and T cell responses were compared between the groups before and after rectal challenge with CCR5-tropic SHIV-SF162P3. When serum samples were assayed for neutralizing antibodies, only weak activity was observed. T cell responses against env epitopes were higher in the serotype-switched group. When these animals were challenged rectally with SHIV-SF162P3, both the Ad5 and serotype-switch groups significantly reduced peak viral loads 2 to 10-fold 2 weeks after infection. Peak viral loads were significantly lower for the serotype-switched group as compared to the HD-Ad5-immunized group. Viral loads declined over 18 weeks after infection with some animals viremia reducing nearly 4 logs from the peak. These data demonstrate significant mucosal vaccine effects after immunization with only env antigens. These data also demonstrate HD-Ad vectors are a robust platform for vaccination.


Virology | 2011

Characterization of Species C Human Adenovirus Serotype 6 (Ad6)

Eric A. Weaver; Mathew L. Hillestad; Reeti Khare; Donna Palmer; Philip Ng; Michael A. Barry

Adenovirus serotype (Ad5) is the most studied Ad. Ad1, 2, and 6 are also members of species C Ad and are presumed to have biologies similar to Ad5. In this work, we have compared the ability of Ad1, 2, 5, and 6 to infect liver and muscle after intravenous and intramuscular injection. We found that Ad6 was surprisingly the most potent at liver gene delivery and that Ad1 and Ad2 were markedly weaker than Ad5 and 6. To understand these differences, we sequenced the Ad6 genome. This revealed that the Ad6 fiber protein is surprisingly three shaft repeats shorter than the others which may explain differences in virus infectivity in vitro, but not in the liver. Comparison of hexon hypervariable regions (HVRs) suggests that the higher transduction by Ad5 and 6 as compared to Ad1 and 2 may be related to differences in charge and length.


Molecular Therapy | 2013

Generation of a Hypomorphic Model of Propionic Acidemia Amenable to Gene Therapy Testing

Adam J. Guenzel; Sean E. Hofherr; Matthew L. Hillestad; Mary E. Barry; Eric A. Weaver; Sarah Venezia; Jan P. Kraus; Dietrich Matern; Michael A. Barry

Propionic acidemia (PA) is a recessive genetic disease that results in an inability to metabolize certain amino acids and odd-chain fatty acids. Current treatment involves restricting consumption of these substrates or liver transplantation. Deletion of the Pcca gene in mice mimics the most severe forms of the human disease. Pcca(-) mice die within 36 hours of birth, making it difficult to test intravenous systemic therapies in them. We generated an adult hypomorphic model of PA in Pcca(-) mice using a transgene bearing an A138T mutant of the human PCCA protein. Pcca(-/-)(A138T) mice have 2% of wild-type PCC activity, survive to adulthood, and have elevations in propionyl-carnitine, methylcitrate, glycine, alanine, lysine, ammonia, and markers associated with cardiomyopathy similar to those in patients with PA. This adult model allowed gene therapy testing by intravenous injection with adenovirus serotype 5 (Ad5) and adeno-associated virus 2/8 (AAV8) vectors. Ad5-mediated more rapid increases in PCCA protein and propionyl-CoA carboxylase (PCC) activity in the liver than AAV8 and both vectors reduced propionylcarnitine and methylcitrate levels. Phenotypic correction was transient with first generation Ad whereas AAV8-mediated long-lasting effects. These data suggest that this PA model may be a useful platform for optimizing systemic intravenous therapies for PA.


Clinical Cancer Research | 2011

Species D Adenoviruses as Oncolytics Against B Cell Cancers

Christopher Y. Chen; Julien S. Senac; Eric A. Weaver; Shannon M. May; Diane F. Jelinek; Philip R. Greipp; Thomas E. Witzig; Michael A. Barry

Purpose: Oncolytic viruses are self-amplifying anticancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B-cell cancers because these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine whether other adenoviruses might have better potency, we “mined” the adenovirus virome of 55 serotypes for viruses that could kill B-cell cancers. Experimental Design: Fifteen adenoviruses selected to represent Ad species B, C, D, E, and F were tested in vitro against cell lines and primary patient B-cell cancers for their ability to infect, replicate in, and kill these cells. Select viruses were also tested against B-cell cancer xenografts in immunodeficient mice. Results: Species D adenoviruses mediated most robust killing against a range of B-cell cancer cell lines, against primary patient marginal zone lymphoma cells, and against primary patient CD138+ myeloma cells in vitro. When injected into xenografts in vivo, single treatment with select species D viruses Ad26 and Ad45 delayed lymphoma growth. Conclusions: Relatively unstudied species D adenoviruses have a unique ability to infect and replicate in B-cell cancers as compared with other adenovirus species. These data suggest these viruses have unique biology in B cells and support translation of novel species D adenoviruses as oncolytics against B-cell cancers. Clin Cancer Res; 17(21); 6712–22. ©2011 AACR.

Collaboration


Dive into the Eric A. Weaver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna Palmer

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge