Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric B. Brandt is active.

Publication


Featured researches published by Eric B. Brandt.


Journal of Clinical Investigation | 2001

An etiological role for aeroallergens and eosinophils in experimental esophagitis

Anil Mishra; Simon P. Hogan; Eric B. Brandt; Marc E. Rothenberg

Eosinophil infiltration into the esophagus is observed in diverse diseases including gastroesophageal reflux and allergic gastroenteritis, but the processes involved are largely unknown. We now report an original model of experimental esophagitis induced by exposure of mice to respiratory allergen. Allergen-challenged mice develop marked levels of esophageal eosinophils, free eosinophil granules, and epithelial cell hyperplasia, features that mimic the human disorders. Interestingly, exposure of mice to oral or intragastric allergen does not promote eosinophilic esophagitis, indicating that hypersensitivity in the esophagus occurs with simultaneous development of pulmonary inflammation. Furthermore, in the absence of eotaxin, eosinophil recruitment is attenuated, whereas in the absence of IL-5, eosinophil accumulation and epithelial hyperplasia are ablated. These results establish a pathophysiological connection between allergic hypersensitivity responses in the lung and esophagus and demonstrate an etiologic role for inhaled allergens and eosinophils in gastrointestinal inflammation.


Journal of Immunology | 2002

IL-5 Promotes Eosinophil Trafficking to the Esophagus

Anil Mishra; Simon P. Hogan; Eric B. Brandt; Marc E. Rothenberg

Eosinophil infiltration into the esophagus occurs in a wide range of diseases; however, the underlying pathophysiological mechanisms involved are largely unknown. We now report that the Th2 cytokine, IL-5, is necessary and sufficient for the induction of eosinophil trafficking to the esophagus. We show that transgenic mice overexpressing IL-5 under the control of a T cell (CD2) or a small intestinal enterocyte (fatty acid-binding protein) promoter have markedly increased eosinophil numbers in the esophagus. For example, esophageal eosinophil levels are 1.9 ± 0.9 and 121 ± 14 eosinophils/mm2 in wild-type and CD2-IL-5-transgenic mice, respectively. Consistent with this effect being mediated by a systemic mechanism, pharmacological administration of IL-5 via a miniosmotic pump in the peritoneal cavity resulted in blood and esophageal eosinophilia. To examine the role of IL-5 in oral Ag-induced esophageal eosinophilia, eosinophilic esophagitis was induced by allergen exposure in IL-5-deficient and wild-type mice. Importantly, IL-5-deficient mice were resistant to eosinophilic esophagitis. Finally, we examined the role of eotaxin when IL-5 was overproduced in vivo. Esophageal eosinophil levels in CD2-IL-5-transgenic mice were found to decrease 15-fold in the absence of the eotaxin gene; however, esophageal eosinophil numbers in eotaxin-deficient IL-5-transgenic mice still remained higher than wild-type mice. In conclusion, these studies demonstrate a central role for IL-5 in inducing eosinophil trafficking to the esophagus.


Nature Immunology | 2001

A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation

Simon P. Hogan; Anil Mishra; Eric B. Brandt; Michael P. Royalty; Samuel M. Pope; Nives Zimmermann; Paul S. Foster; Marc E. Rothenberg

Although eosinophils have been implicated in the pathogenesis of gastrointestinal disorders, their function has not been established. Using a murine model of oral antigen–induced eosinophil-associated gastrointestinal disease, we report the pathological consequences of eosinophilic inflammation and the involvement of eotaxin and eosinophils. Exposure of mice to enteric-coated antigen promotes an extensive T helper 2–associated eosinophilic inflammatory response involving the esophagus, stomach, small intestine and Peyers patches as well as the development of gastric dysmotility, gastromegaly and cachexia. Electron microscopy shows eosinophils in proximity to damaged axons, which indicated that eosinophils were mediating a pathologic response. In addition, mice deficient in eotaxin have impaired eosinophil recruitment and are protected from gastromegaly and cachexia. These results establish a critical pathological function for eotaxin and eosinophils in gastrointestinal allergic hypersensitivity.


Journal of clinical & cellular immunology | 2011

Th2 Cytokines and Atopic Dermatitis

Eric B. Brandt; Umasundari Sivaprasad

Atopic dermatitis (AD), a chronic relapsing inflammatory skin disease, is increasing in prevalence around the world. Intensive research is ongoing to understand the mechanisms involved in the development of AD and offer new treatment options for patients suffering from AD. In this review, we highlight the importance of allergic Th2 responses in the development of the disease and summarize relevant literature, including genetic studies, studies of human skin and mechanistic studies on keratinocytes and mouse models of AD. We discuss the importance of the skin barrier and review recent findings on the pro-Th2 cytokines TSLP, IL-25, and IL-33, notably their ability to polarize dendritic cells and promote Th2 responses. After a brief update on the contribution of different T-cell subsets to AD, we focus on Th2 cells and the respective contributions of each of the Th2 cytokines (IL-4, IL-13, IL-5, IL-31, and IL-10) to AD. We conclude with a brief discussion of the current gaps in our knowledge and technical limitations.


Journal of Experimental Medicine | 2008

IL-9– and mast cell–mediated intestinal permeability predisposes to oral antigen hypersensitivity

Elizabeth Forbes; Katherine Groschwitz; J. Pablo Abonia; Eric B. Brandt; Elizabeth Cohen; Carine Blanchard; Richard Ahrens; Luqman Seidu; Andrew N. J. McKenzie; Richard T. Strait; Fred D. Finkelman; Paul S. Foster; Klaus I. Matthaei; Marc E. Rothenberg; Simon P. Hogan

Previous mouse and clinical studies demonstrate a link between Th2 intestinal inflammation and induction of the effector phase of food allergy. However, the mechanism by which sensitization and mast cell responses occurs is largely unknown. We demonstrate that interleukin (IL)-9 has an important role in this process. IL-9–deficient mice fail to develop experimental oral antigen–induced intestinal anaphylaxis, and intestinal IL-9 overexpression induces an intestinal anaphylaxis phenotype (intestinal mastocytosis, intestinal permeability, and intravascular leakage). In addition, intestinal IL-9 overexpression predisposes to oral antigen sensitization, which requires mast cells and increased intestinal permeability. These observations demonstrate a central role for IL-9 and mast cells in experimental intestinal permeability in oral antigen sensitization and suggest that IL-9–mediated mast cell responses have an important role in food allergy.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Distinct roles for IL-13 and IL-4 via IL-13 receptor α1 and the type II IL-4 receptor in asthma pathogenesis

Ariel Munitz; Eric B. Brandt; Melissa K. Mingler; F D Finkelman; Marc E. Rothenberg

IL-13 and IL-4 are central T helper 2 (Th2) cytokines in the immune system and potent activators of inflammatory responses and fibrosis during Th2 inflammation. Recent studies using Il13ra1−/− mice have demonstrated a critical role for IL-13 receptor (IL-13R) α1 in allergen-induced airway responses. However, these observations require further attention especially because IL-4 can induce similar lung pathology to IL-13, independent of IL-13, and is still present in the allergic lung. Thus, we hypothesized that IL-13Rα1 regulates IL-4-induced responses in the lung. To dissect the role of IL-13Rα1 and the type I and II IL-4Rs in experimental asthma, we examined lung pathology induced by allergen, IL-4, and IL-13 challenge in Il13ra1−/− mice. We report that IL-13Rα1 is essential for baseline IgE production, but Th2 and IgE responses to T cell-dependent antigens are IL-13Rα1-independent. Furthermore, we demonstrate that increased airway resistance, mucus, TGF-β, and eotaxin(s) production, but not cellular infiltration, are critically dependent on IL-13Rα1. Surprisingly, our results identify a CCR3- and IL-13Rα1-independent pathway for lung eosinophilia. Global expression profiling of lungs from mice stimulated with allergen or IL-4 demonstrated that marker genes of alternatively activated macrophages are differentially regulated by the type I and type II IL-4R. Taken together, our data provide a comprehensive mechanistic analysis of the critical role by which IL-13Rα1 mediates allergic lung pathology and highlight unforeseen roles for the type II IL-4R.


Journal of Immunology | 2000

Murine Eotaxin-2: A Constitutive Eosinophil Chemokine Induced by Allergen Challenge and IL-4 Overexpression

Nives Zimmermann; Simon P. Hogan; Anil Mishra; Eric B. Brandt; Thomas R. Bodette; Samuel M. Pope; Fred D. Finkelman; Marc E. Rothenberg

The generation of tissue eosinophilia is governed in part by chemokines; initial investigation has identified three chemokines in the human genome with eosinophil selectivity, referred to as eotaxin-1, -2, and -3. Elucidation of the role of these chemokines is dependent in part upon analysis of murine homologues; however, only one murine homologue, eotaxin-1, has been identified. We now report the characterization of the murine eotaxin-2 cDNA, gene and protein. The eotaxin-2 cDNA contains an open reading frame that encodes for a 119-amino acid protein. The mature protein, which is predicted to contain 93 amino acids, is most homologous to human eotaxin-2 (59.1% identity), but is only 38.9% identical with murine eotaxin-1. Northern blot analysis reveals three predominant mRNA species and highest constitutive expression in the jejunum and spleen. Additionally, allergen challenge in the lung with Asperigillus fumigatus or OVA revealed marked induction of eotaxin-2 mRNA. Furthermore, eotaxin-2 mRNA was strongly induced by both transgenic over-expression of IL-4 in the lung and administration of intranasal IL-4. Analysis of eotaxin-2 mRNA expression in mice transgenic for IL-4 but genetically deficient in STAT-6 revealed that the IL-4-induced expression was STAT-6 dependent. Recombinant eotaxin-2 protein induced dose-dependent chemotactic responses on murine eosinophils at concentrations between 1–1000 ng/ml, whereas no activity was displayed on murine macrophages or neutrophils. Functional analysis of recombinant protein variants revealed a critical role for the amino terminus. Thus, murine eotaxin-2 is a constitutively expressed eosinophil chemokine likely to be involved in homeostatic, allergen-induced, and IL-4-associated immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Defective T cell development and function in calcineurin Aβ-deficient mice

Orlando F. Bueno; Eric B. Brandt; Marc E. Rothenberg; Jeffery D. Molkentin

The calcium-dependent phosphatase calcineurin and its downstream transcriptional effector nuclear factor of activated T cells (NFAT) are important regulators of inducible gene expression in multiple cell types. In T cells, calcineurin-NFAT signaling represents a critical event for mediating cellular activation and the immune response. The widely used immunosuppressant agents cyclosporin and FK506 are thought to antagonize the immune response by directly inhibiting calcineurin-NFAT signal transduction in lymphocytes. To unequivocally establish the importance of calcineurin signaling as a mediator of the immune response, we deleted the gene encoding the predominant calcineurin isoform expressed in lymphocytes, calcineurin Aβ (CnAβ). CnAβ−/− mice were viable as adults, but displayed defective T cell development characterized by fewer total CD3 cells and reduced CD4 and CD8 single positive cells. Total peripheral T cell numbers were significantly reduced in CnAβ−/− mice and were defective in proliferative capacity and IL-2 production in response to PMA/ionomycin and T cell receptor cross-linking. CnAβ−/− mice also were permissive to allogeneic tumor-cell transplantation in vivo, similar to cyclosporin-treated wild-type mice. A mechanism for the compromised immune response is suggested by the observation that CnAβ−/− T cells are defective in stimulation-induced NFATc1, NFATc2, and NFATc3 activation. These results establish a critical role for CnAβ signaling in regulating T cell development and activation in vivo.


The Journal of Allergy and Clinical Immunology | 2013

Diesel exhaust particle induction of IL-17A contributes to severe asthma

Eric B. Brandt; Melinda Butsch Kovacic; Gerald B. Lee; Aaron M. Gibson; Thomas H. Acciani; Timothy D. Le Cras; Patrick H. Ryan; Alison L. Budelsky; Gurjit K. Khurana Hershey

BACKGROUND IL-17A has been implicated in severe forms of asthma. However, the factors that promote IL-17A production during the pathogenesis of severe asthma remain undefined. Diesel exhaust particles (DEPs) are a major component of traffic-related air pollution and are implicated in asthma pathogenesis and exacerbation. OBJECTIVE We sought to determine the mechanism by which DEP exposure affects asthma severity using human and mouse studies. METHODS BALB/c mice were challenged with DEPs with or without house dust mite (HDM) extract. Airway inflammation and function, bronchoalveolar lavage fluid cytokine levels, and flow cytometry of lung T cells were assessed. The effect of DEP exposure on the frequency of asthma symptoms and serum cytokine levels was determined in children with allergic asthma. RESULTS In mice exposure to DEPs alone did not induce asthma. DEP and HDM coexposure markedly enhanced airway hyperresponsiveness compared with HDM exposure alone and generated a mixed T(H)2 and T(H)17 response, including IL-13(+)IL-17A(+) double-producing T cells. IL-17A neutralization prevented DEP-induced exacerbation of airway hyperresponsiveness. Among 235 high DEP-exposed children with allergic asthma, 32.2% had more frequent asthma symptoms over a 12-month period compared with only 14.2% in the low DEP-exposed group (P = .002). Additionally, high DEP-exposed children with allergic asthma had nearly 6 times higher serum IL-17A levels compared with low DEP-exposed children. CONCLUSIONS Expansion of T(H)17 cells contributes to DEP-mediated exacerbation of allergic asthma. Neutralization of IL-17A might be a useful potential therapeutic strategy to counteract the asthma-promoting effects of traffic-related air pollution, especially in highly exposed patients with severe allergic asthma.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-γ (Mig, CXCL9)

Patricia C. Fulkerson; Nives Zimmermann; Eric B. Brandt; Emily E. Muntel; Matthew P. Doepker; Jessica L Kavanaugh; Anil Mishra; David P. Witte; Hongwei Zhang; Joshua M. Farber; Ming Yang; Paul S. Foster; Marc E. Rothenberg

Experimental analysis of allergic airway inflammation (AAI) in animals and humans is associated with coordinate gene induction. Using DNA microarray analysis, we have identified a large panel of AAI signature genes. Unexpectedly, the allergen-challenged lung (a T helper 2 microenvironment) was found to be associated with the expression of T helper 1-associated CXCR3 ligands, monokine induced by IFN-γ (Mig), and IFN-γ-inducible protein of 10 kDa (IP-10). Here we report that Mig functions as a negative regulator of murine eosinophils. Whereas Mig was not able to induce chemotaxis of eosinophils, pretreatment with Mig induced a dose-dependent inhibition of chemoattractant-induced eosinophil transmigration in vitro. Moreover, i.v. administration of low doses of Mig (≈10–30 μg/kg) induced strong and specific dose-dependent inhibition of chemokine-, IL-13-, and allergen-induced eosinophil recruitment and, conversely, neutralization of Mig before allergen challenge increased airway eosinophilia. Importantly, Mig also inhibited a CCR3-mediated functional response in eosinophils. These results indicate that the ultimate distribution and function of inflammatory cells within the allergic lung is dictated by a balance between positively and negatively regulatory chemokines. The identification of a naturally occurring eosinophil inhibitory chemokine pathway in vivo provides a strategic basis for future therapeutic consideration.

Collaboration


Dive into the Eric B. Brandt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Mishra

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gurjit K. Khurana Hershey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simon P. Hogan

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nives Zimmermann

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simon P. Hogan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Aaron M. Gibson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred D. Finkelman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge