Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric B. Laber is active.

Publication


Featured researches published by Eric B. Laber.


Proceedings of the Royal Society B: Biological Sciences | 2015

The ecology of microscopic life in household dust

Robert R. Dunn; Brian J. Reich; Krishna Pacifici; Eric B. Laber; Holly L. Menninger; James M. Morton; Jessica B. Henley; Jonathan W. Leff; Shelly L. Miller; Noah Fierer

We spend the majority of our lives indoors; yet, we currently lack a comprehensive understanding of how the microbial communities found in homes vary across broad geographical regions and what factors are most important in shaping the types of microorganisms found inside homes. Here, we investigated the fungal and bacterial communities found in settled dust collected from inside and outside approximately 1200 homes located across the continental US, homes that represent a broad range of home designs and span many climatic zones. Indoor and outdoor dust samples harboured distinct microbial communities, but these differences were larger for bacteria than for fungi with most indoor fungi originating outside the home. Indoor fungal communities and the distribution of potential allergens varied predictably across climate and geographical regions; where you live determines what fungi live with you inside your home. By contrast, bacterial communities in indoor dust were more strongly influenced by the number and types of occupants living in the homes. In particular, the female : male ratio and whether a house had pets had a significant influence on the types of bacteria found inside our homes highlighting that who you live with determines what bacteria are found inside your home.


Statistical Science | 2014

Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes.

Phillip J. Schulte; Anastasios A. Tsiatis; Eric B. Laber; Marie Davidian

In clinical practice, physicians make a series of treatment decisions over the course of a patients disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study.


Journal of the American Statistical Association | 2015

New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes

Yingqi Zhao; Donglin Zeng; Eric B. Laber; Michael R. Kosorok

Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients and find the DTR which will produce the best long-term outcome if implemented. We introduce two new statistical learning methods for estimating the optimal DTR, termed backward outcome weighted learning (BOWL), and simultaneous outcome weighted learning (SOWL). These approaches convert individualized treatment selection into an either sequential or simultaneous classification problem, and can thus be applied by modifying existing machine learning techniques. The proposed methods are based on directly maximizing over all DTRs a nonparametric estimator of the expected long-term outcome; this is fundamentally different than regression-based methods, for example, Q-learning, which indirectly attempt such maximization and rely heavily on the correctness of postulated regression models.  We prove that the resulting rules are consistent, and provide finite sample bounds for the errors using the estimated rules. Simulation results suggest the proposed methods produce superior DTRs compared with Q-learning especially in small samples. We illustrate the methods using data from a clinical trial for smoking cessation. Supplementary materials for this article are available online.


Biometrika | 2013

Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions

Baqun Zhang; Anastasios A. Tsiatis; Eric B. Laber; Marie Davidian

A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patients history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the methods performance and robustness to model misspecification, which is a key concern.


Electronic Journal of Statistics | 2014

Dynamic treatment regimes: Technical challenges and applications

Eric B. Laber; Daniel J. Lizotte; Min Qian; William E. Pelham; Susan A. Murphy

Dynamic treatment regimes are of growing interest across the clinical sciences because these regimes provide one way to operationalize and thus inform sequential personalized clinical decision making. Formally, a dynamic treatment regime is a sequence of decision rules, one per stage of clinical intervention. Each decision rule maps up-to-date patient information to a recommended treatment. We briefly review a variety of approaches for using data to construct the decision rules. We then review a critical inferential challenge that results from nonregularity, which often arises in this area. In particular, nonregularity arises in inference for parameters in the optimal dynamic treatment regime; the asymptotic, limiting, distribution of estimators are sensitive to local perturbations. We propose and evaluate a locally consistent Adaptive Confidence Interval (ACI) for the parameters of the optimal dynamic treatment regime. We use data from the Adaptive Pharmacological and Behavioral Treatments for Children with ADHD Trial as an illustrative example. We conclude by highlighting and discussing emerging theoretical problems in this area.


Biometrics | 2013

Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme

Bibhas Chakraborty; Eric B. Laber; Yingqi Zhao

A dynamic treatment regime consists of a set of decision rules that dictate how to individualize treatment to patients based on available treatment and covariate history. A common method for estimating an optimal dynamic treatment regime from data is Q-learning which involves nonsmooth operations of the data. This nonsmoothness causes standard asymptotic approaches for inference like the bootstrap or Taylor series arguments to breakdown if applied without correction. Here, we consider the m-out-of-n bootstrap for constructing confidence intervals for the parameters indexing the optimal dynamic regime. We propose an adaptive choice of m and show that it produces asymptotically correct confidence sets under fixed alternatives. Furthermore, the proposed method has the advantage of being conceptually and computationally much simple than competing methods possessing this same theoretical property. We provide an extensive simulation study to compare the proposed method with currently available inference procedures. The results suggest that the proposed method delivers nominal coverage while being less conservative than alternatives. The proposed methods are implemented in the qLearn R-package and have been made available on the Comprehensive R-Archive Network (http://cran.r-project.org/). Analysis of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study is used as an illustrative example.


Biometrics | 2015

Using decision lists to construct interpretable and parsimonious treatment regimes

Yichi Zhang; Eric B. Laber; Anastasios A. Tsiatis; Marie Davidian

A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of treatment regimes for application in clinical practice requires the long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the statistician must integrate clinical science into the statistical models underlying a treatment regime and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate meaningful information exchange, it is important that estimated treatment regimes be interpretable in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose members are representable as a short list of if-then statements. Regimes in this class are immediately interpretable and are therefore an appealing choice for broad application in practice. We derive a robust estimator of the optimal regime within this class and demonstrate its finite sample performance using simulation experiments. The proposed method is illustrated with data from two clinical trials.


Statistics in Medicine | 2014

A multiple imputation strategy for sequential multiple assignment randomized trials

Susan M. Shortreed; Eric B. Laber; T. Scott Stroup; Joelle Pineau; Susan A. Murphy

Sequential multiple assignment randomized trials (SMARTs) are increasingly being used to inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over time. Each randomization occurs at a critical decision point in the treatment course. These critical decision points often correspond to milestones in the disease process or other changes in a patients health status. Thus, the timing and number of randomizations may vary across patients and depend on evolving patient-specific information. This presents unique challenges when analyzing data from a SMART in the presence of missing data. This paper presents the first comprehensive discussion of missing data issues typical of SMART studies: we describe five specific challenges and propose a flexible imputation strategy to facilitate valid statistical estimation and inference using incomplete data from a SMART. To illustrate these contributions, we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness, one of the most well-known SMARTs to date.


PLOS ONE | 2015

Fungi identify the geographic origin of dust samples.

Neal S. Grantham; Brian J. Reich; Krishna Pacifici; Eric B. Laber; Holly L. Menninger; Jessica B. Henley; Jonathan W. Leff; Noah Fierer; Robert R. Dunn

There is a long history of archaeologists and forensic scientists using pollen found in a dust sample to identify its geographic origin or history. Such palynological approaches have important limitations as they require time-consuming identification of pollen grains, a priori knowledge of plant species distributions, and a sufficient diversity of pollen types to permit spatial or temporal identification. We demonstrate an alternative approach based on DNA sequencing analyses of the fungal diversity found in dust samples. Using nearly 1,000 dust samples collected from across the continental U.S., our analyses identify up to 40,000 fungal taxa from these samples, many of which exhibit a high degree of geographic endemism. We develop a statistical learning algorithm via discriminant analysis that exploits this geographic endemicity in the fungal diversity to correctly identify samples to within a few hundred kilometers of their geographic origin with high probability. In addition, our statistical approach provides a measure of certainty for each prediction, in contrast with current palynology methods that are almost always based on expert opinion and devoid of statistical inference. Fungal taxa found in dust samples can therefore be used to identify the origin of that dust and, more importantly, we can quantify our degree of certainty that a sample originated in a particular place. This work opens up a new approach to forensic biology that could be used by scientists to identify the origin of dust or soil samples found on objects, clothing, or archaeological artifacts.


Clinical Trials | 2014

Inference about the expected performance of a data-driven dynamic treatment regime

Bibhas Chakraborty; Eric B. Laber; Yingqi Zhao

Background A dynamic treatment regime (DTR) comprises a sequence of decision rules, one per stage of intervention, that recommends how to individualize treatment to patients based on evolving treatment and covariate history. These regimes are useful for managing chronic disorders, and fit into the larger paradigm of personalized medicine. The Value of a DTR is the expected outcome when the DTR is used to assign treatments to a population of interest. Purpose The Value of a data-driven DTR, estimated using data from a Sequential Multiple Assignment Randomized Trial, is both a data-dependent parameter and a non-smooth function of the underlying generative distribution. These features introduce additional variability that is not accounted for by standard methods for conducting statistical inference, for example, the bootstrap or normal approximations, if applied without adjustment. Our purpose is to provide a feasible method for constructing valid confidence intervals (CIs) for this quantity of practical interest. Methods We propose a conceptually simple and computationally feasible method for constructing valid CIs for the Value of an estimated DTR based on subsampling. The method is self-tuning by virtue of an approach called the double bootstrap. We demonstrate the proposed method using a series of simulated experiments. Results The proposed method offers considerable improvement in terms of coverage rates of the CIs over the standard bootstrap approach. Limitations In this article, we have restricted our attention to Q-learning for estimating the optimal DTR. However, other methods can be employed for this purpose; to keep the discussion focused, we have not explored these alternatives. Conclusion Subsampling-based CIs provide much better performance compared to standard bootstrap for the Value of an estimated DTR.

Collaboration


Dive into the Eric B. Laber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Kosorok

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard A. Stefanski

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Baqun Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin A. Linn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge