Eric B. Nelson
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric B. Nelson.
Applied Soil Ecology | 2000
G.T. Hill; N.A. Mitkowski; L. Aldrich-Wolfe; L.R. Emele; D.D. Jurkonie; A. Ficke; S. Maldonado-Ramirez; S.T. Lynch; Eric B. Nelson
Abstract Soil microorganisms play important roles in soil quality and plant productivity. The development of effective methods for studying the diversity, distribution, and behavior of microorganisms in soil habitats is essential for a broader understanding of soil health. Traditionally, the analysis of soil microbial communities has relied on culturing techniques using a variety of culture media designed to maximize the recovery of diverse microbial populations. However, only a small fraction (
Plant and Soil | 1990
Eric B. Nelson
Plant pathogenic fungi survive in soils in a quiescent state. In order for many root-pathogen interactions to be initiated, dormant propagules must be activated by molecules present in seed and root exudates. Without the release of such stimulatory molecules, the majority of root infections do not occur. Currently, little is known about the specific molecules involved in stimulating propagule germination and initiating root-pathogen interactions. Although certain molecules can be shown to elicit germination responses in vitro, responses of propagules reared on conventional culture media do not always reflect the responses of those formed on plant tissues in soil. Consequently, it is not possible to extend conclusions from laboratory determinations of the role of specific exudate molecules in stimulating fungal propagule germination to soil systems. The interaction of Pythium species with germinating seeds has served as a model system to answer questions about propagule behavior and the role of exudate stimulant molecules in establishing root-fungus interactions. The potential role of both volatile and water-soluble molecules in stimulating propagule germination are discussed.
Applied and Environmental Microbiology | 2003
Mary E. McKellar; Eric B. Nelson
ABSTRACT Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ultimum sporangium germination, reduced seed colonization, and reduced damping-off in transplant experiments. These reductions were not observed when cottonseeds were sown in a conducive leaf compost. Microbial consortia recovered from the surface of cottonseeds during the first few hours of germination in suppressive compost (suppressive consortia) induced significant levels of damping-off suppression, whereas no suppression was induced by microbial consortia recovered from cottonseeds germinated in conducive compost (conducive consortia). Suppressive consortia rapidly metabolized linoleic acid, whereas conducive consortia did not. Furthermore, populations of fatty-acid-metabolizing bacteria and actinobacteria were higher in suppressive consortia than in conducive consortia. Individual bacterial isolates varied in their ability to metabolize linoleic acid and protect seedlings from damping-off. Results indicate that communities of compost-inhabiting microorganisms colonizing cottonseeds within the first few hours after sowing in a Pythium-suppressive compost play a major role in the suppression of P. ultimum sporangium germination, seed colonization, and damping-off. Results further indicate that fatty acid metabolism by these seed-colonizing bacterial consortia can explain the Pythium suppression observed.
Applied and Environmental Microbiology | 2000
Karin van Dijk; Eric B. Nelson
ABSTRACT Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses ofP. ultimum, we generated mutants of E. cloacaeto evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacaeEcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in β-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadLcomplemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacaeprevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections.
Applied and Environmental Microbiology | 2003
Koji Kageyama; Eric B. Nelson
ABSTRACT This study was initiated to understand whether differential biological control efficacy of Enterobacter cloacae on various plant species is due to differences in the ability of E. cloacae to inactivate the stimulatory activity of seed exudates to Pythium ultimum sporangium germination. In biological control assays, E. cloacae was effective in controlling Pythium damping-off when placed on the seeds of carrot, cotton, cucumber, lettuce, radish, tomato, and wheat but failed to protect corn and pea from damping-off. Seeds from plants such as corn and pea had high rates of exudation, whereas cotton and cucumber seeds had much lower rates of exudation. Patterns of seed exudation and the release of P. ultimum sporangium germination stimulants varied among the plants tested. Seed exudates of plants such as carrot, corn, lettuce, pea, radish, and wheat were generally more stimulatory to P. ultimum than were the exudates of cotton, cucumber, sunflower, and tomato. However, this was not directly related to the ability of E. cloacae to inactivate the stimulatory activity of the exudate and reduce P. ultimum sporangium germination. In the spermosphere, E. cloacae readily reduced the stimulatory activity of seed exudates from all plant species except corn and pea. Our data have shown that the inability of E. cloacae to protect corn and pea seeds from Pythium damping-off is directly related to its ability to inactivate the stimulatory activity of seed exudates. On all other plants tested, E. cloacae was effective in suppressing damping-off and inactivating the stimulatory activity of seed exudates.
Plant and Soil | 2004
Angelika Rumberger; Shengrui Yao; Ian A. Merwin; Eric B. Nelson; Janice E. Thies
AbstractApple replant disease (ARD) is a complex soilborne disease syndrome that often causes problems when renovating old orchard sites. Soil fumigants sometimes control ARD, but biological and cultural alternatives are needed. In this study the growth of two widely used clonal apple (Malus domestica) rootstocks (M7 and M26) were compared to three new rootstocks from the Cornell-Geneva series (CG16, CG30 and CG210 (a.k.a. CG6210)) in an orchard site with a history of ARD, in Ithaca, NY. Trees were planted in two distinguishable positions – the previous tree rows versus the old inter-row grass lanes. Additionally, we compared the effects of compost amendment and fumigation with dichloropropene plus chloropicrin on tree growth on each replant rootstock. Rhizosphere bacteria and actinobacteria were assessed using PCR-DGGE for the rootstocks M7, M26, CG30 and CG210. Tree growth on the rootstocks M7, M26 and CG16 was suppressed in the old tree rows relative to grass lanes, while trees on CG30 and CG210 rootstocks grew equally well in both positions. The species composition of rhizosphere bacteria and actinobacteria differed significantly between the planting positions and between the rootstocks M7 and M26 compared to CG30 and CG210. In contrast, the preplant compost or fumigation soil treatments had no effect on tree growth and little impact on rhizosphere bacterial community composition. Abbreviations: ARD – apple replant disease; DGGE – denaturing gradient gel electrophoresis; PCR – polymerase chain reaction.
Soil Biology & Biochemistry | 1988
Eric B. Nelson; G.E. Harman; G.T. Nash
Abstract Biological control activity of Trichoderma koningii and T. harzianum against Pythiura seed rot and pre-emergence damping-off of pea was increased by adding various compounds to seed treatments. Biological control activity of T. koningii was increased up to 48% while activity of T. harzianum was increased up to 44% by incorporating specific compounds into seed treatments. Compounds promoting T. koningii were generally ineffective in promoting biological control activity of T. harzianum . Organic acids were most promotive to the activity of T. koningii whereas polysaccharides and polyhydroxy alcohols were most promotive to T. harzianum . There was no relationship between the ability of the compounds to support in vitro growth and proliferation of Trichoderma strains in the spermosphere and increased biological control activity by the antagonist.
Phytopathology | 2008
Mei-Hsing Chen; Eric B. Nelson
Composts are known for their suppressive properties toward many different seed- and root-infecting pathogens and diseases. Although disease and pathogen suppression induced by composts is believed to be mediated by microbial activities, the nature of the microbial species and processes responsible for suppressiveness remain unknown. We demonstrated previously that seed-colonizing microbial consortia from leaf compost could explain the observed levels of Pythium ultimum-induced damping-off suppression on cotton. The aim of the present work was to determine whether seed-colonizing microbial consortia could explain Pythium damping-off suppression in municipal biosolids compost on three different plant species. Significant levels of disease suppression were observed on cucumber, wheat, and pea at water potentials of -2 kPa. The suppression of damping-off on cucumber and wheat could be eliminated by autoclaving the compost prior to sowing. High levels of suppressiveness were expressed both on cucumber and on wheat seed surfaces within 8 h of sowing. However, the expression of damping-off suppression on the surface of pea seeds was inconsistent and highly variable. Our results demonstrate that compost-induced suppression of P. ultimum damping-off of cucumber and wheat can be explained by the microbial consortia colonizing seeds within 8 h of sowing. These results further suggest that disease suppression in composts is related to microbial species that interact with the pathogen in its infection court and not in the bulk compost.
Journal of General Plant Pathology | 2005
Koji Kageyama; Ayako Nakashima; Yuki Kajihara; Haruhisa Suga; Eric B. Nelson
Isolates of Pythium graminicola and related species were differentiated using restriction fragment length polymorphism (RFLP) analyses of the internal transcribed spacer (ITS) regions of rDNA and the cytochrome c oxidase subunit II (COX II) gene. These sequences were used in subsequent phylogenetic analyses. Finally, the phylogenetic placement of species was compared to that determined from morphological characteristics. The 62 isolates tested were divided into seven groups, A–G, based on RFLP analysis of the rDNA-ITS region. In the RFLP analysis of the COX II gene, isolates were divided into groups similar to those based on ITS-RFLP. Groups A and B were each separated into two additional subgroups. Grouping of isolates based on RFLP analyses agreed with the morphological differentiation. Groups A, B, D, E, F, and G were identified as P. graminicola, P. arrhenomanes, P. aphanidermatum, P. myriotylum, P. torulosum, and P. vanterpoolii, respectively. Group C was closely related to group B based on phylogenetic analysis of the rDNA-ITS region and the COX II gene and is similar to P. arrhenomanes. Each of the other species occupied their own individual clades. Although P. arrhenomanes is morphologically similar to P. graminicola, our phylogenetic analyses revealed that it was evolutionarily distant from P. graminicola and more closely related to P. vanterpoolii. Our analysis also revealed that P. torulosum with smaller oogonia is more closely related to P. myriotylum with large oogonia than to P. vanterpoolii, which forms smaller oogonia and is morphologically similar to P. torulosum. P. aphanidermatum with large oogonia and aplerotic oospores was not related to the morphologically similar species P. myriotylum. Results suggest that P. graminicola and related species are phylogenetically distinct, and molecular analyses, in addition to morphological analyses, are necessary for the accurate taxonomic placement of species in this complex.
Frontiers in Microbiology | 2015
Kurt P. Kowalski; Charles R. Bacon; Wesley A. Bickford; Heather A. Braun; Keith Clay; Michele Leduc-Lapierre; Elizabeth Lillard; Melissa K. McCormick; Eric B. Nelson; Mónica S. Torres; James White; Douglas A. Wilcox
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.