Eric Berberich
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Berberich.
european symposium on algorithms | 2002
Eric Berberich; Arno Eigenwillig; Michael Hemmer; Susan Hert; Kurt Mehlhorn; Elmar Schömer
We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and an algorithm for computing the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives).
symposium on computational geometry | 2005
Eric Berberich; Michael Hemmer; Lutz Kettner; Elmar Schömer; Nicola Wolpert
We present the first exact, complete and efficient implementation that computes for a given set P=p1,...,pn of quadric surfaces the planar map induced by all intersection curves p1∩ pi, 2 ≤ i ≤ n, running on the surface of p1. The vertices in this graph are the singular and x-extreme points of the curves as well as all intersection points of pairs of curves. Two vertices are connected by an edge if the underlying points are connected by a branch of one of the curves. Our work is based on and extends ideas developed in [20] and [9].Our implementation is complete in the sense that it can handle all kind of inputs including all degenerate ones where intersection curves have singularities or pairs of curves intersect with high multiplicity. It is exact in that it always computes the mathematical correct result. It is efficient measured in running times.
algorithm engineering and experimentation | 2011
Eric Berberich; Pavel Emeliyanenko; Michael Sagraloff
We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, Lgp and Maples Isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.
european symposium on algorithms | 2005
Eric Berberich; Arno Eigenwillig; Michael Hemmer; Susan Hert; Lutz Kettner; Kurt Mehlhorn; Joachim Reichel; Susanne Schmitt; Elmar Schömer; Nicola Wolpert
We present the first release of the Exacus C++ libraries. We aim for systematic support of non-linear geometry in software libraries. Our goals are efficiency, correctness, completeness, clarity of the design, modularity, flexibility, and ease of use. We present the generic design and structure of the libraries, which currently compute arrangements of curves and curve segments of low algebraic degree, and boolean operations on polygons bounded by such segments.
symposium on computational geometry | 2011
Eric Berberich; Michael Hemmer; Michael Kerber
We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL
european symposium on algorithms | 2007
Eric Berberich; Efi Fogel; Dan Halperin; Kurt Mehlhorn; Ron Wein
We introduce a general framework for sweeping a set of curves embedded on a two-dimensional parametric surface. We can handle planes, cylinders, spheres, tori, and surfaces homeomorphic to them. A major goal of our work is to maximize code reuse by generalizing the prevalent sweep-line paradigm and its implementation so that it can be employed on a large class of surfaces and curves embedded on them. We have realized our approach as a prototypical CGAL package. We present experimental results for two concrete adaptations of the framework: (i) arrangements of arcs of great circles embedded on a sphere, and (ii) arrangements of intersection curves between quadric surfaces embedded on a quadric.
Theoretical Computer Science | 2013
Eric Berberich; Pavel Emeliyanenko; Alexander Kobel; Michael Sagraloff
We present a certified and complete algorithm to compute arrangements of real planar algebraic curves. It computes the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level perspective, the overall method splits into two main subroutines, namely an algorithm denoted Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and an algorithm denoted GeoTop to compute the topology of a single algebraic curve. Compared to existing approaches based on elimination techniques, we considerably improve the corresponding lifting steps in both subroutines. As a result, generic position of the input system is never assumed, and thus our algorithm never demands for any change of coordinates. In addition, we significantly limit the types of symbolic operations involved, that is, we only use resultant and gcd computations as purely symbolic operations. The latter results are achieved by combining techniques from different fields such as (modular) symbolic computation, numerical analysis and algebraic geometry. We have implemented our algorithms as prototypical contributions to the C++-project Cgal. We exploit graphics hardware to expedite the remaining symbolic computations. We have also compared our implementation with the current reference implementations, that is, Lgp and Maple’s Isolate for polynomial system solving, and Cgal’s bivariate algebraic kernel for analyses and arrangement computations of algebraic curves. For various series of challenging instances, our exhaustive experiments show that the new implementations outperform the existing ones.
Mathematics in Computer Science | 2010
Eric Berberich; Efi Fogel; Dan Halperin; Kurt Mehlhorn; Ron Wein
We introduce a framework for the construction, maintenance, and manipulation of arrangements of curves embedded on certain two-dimensional orientable parametric surfaces in three-dimensional space. The framework applies to planes, cylinders, spheres, tori, and surfaces homeomorphic to them. We reduce the effort needed to generalize existing algorithms, such as the sweep line and zone traversal algorithms, originally designed for arrangements of bounded curves in the plane, by extensive reuse of code. We have realized our approach as the Cgal package Arrangement_on_surface_2. We define a compact and modular interface for our framework; for a given application a required small subset of the interface can be identified. Then, only this subset must be implemented. A companion paper describes concretizations for several types of surfaces and curves embedded on them, and applications. This is the first implementation of a generic algorithm that can handle arrangements on a large class of parametric surfaces.
Mathematics in Computer Science | 2010
Eric Berberich; Efi Fogel; Dan Halperin; Michael Kerber; Ophir Setter
We describe the algorithms and implementation details involved in the concretizations of a generic framework that enables exact construction, maintenance, and manipulation of arrangements embedded on certain two-dimensional orientable parametric surfaces in three-dimensional space. The fundamentals of the framework are described in a companion paper. Our work covers arrangements embedded on elliptic quadrics and cyclides induced by intersections with other algebraic surfaces, and a specialized case of arrangements induced by arcs of great circles embedded on the sphere. We also demonstrate how such arrangements can be used to accomplish various geometric tasks efficiently, such as computing the Minkowski sums of polytopes, the envelope of surfaces, and Voronoi diagrams embedded on parametric surfaces. We do not assume general position. Namely, we handle degenerate input, and produce exact results in all cases. Our implementation is realized using Cgal and, in particular, the package that provides the underlying framework. We have conducted experiments on various data sets, and documented the practical efficiency of our approach.
international symposium on visual computing | 2009
Pavel Emeliyanenko; Eric Berberich; Michael Sagraloff
Given a Cylindrical Algebraic Decomposition [2] of an implicitly defined algebraic curve, visualizing distinct curve arcs is not as easy as it stands because, despite the absence of singularities in the interior, the arcs can pass arbitrary close to each other. We present an algorithm to visualize distinct arcs of algebraic curves efficiently and precise (at a given resolution), irrespective of how close to each other they actually pass. Our hybrid method inherits the ideas of subdivision and curve-tracking methods. With an adaptive mixed-precision model we can render the majority of curves using machine arithmetic without sacrificing the exactness of the final result. The correctness and applicability of our algorithm is borne out by the success of our web-demo presented in [11].