Eric Boakye-Gyasi
Kwame Nkrumah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Boakye-Gyasi.
Journal of Pharmacy and Bioallied Sciences | 2012
Eric Woode; Elvis O. Ameyaw; Eric Boakye-Gyasi; Wonder Kofi Mensah Abotsi
Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE) and xylopic acid (XA), in murine models. Materials and Methods: XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (Tail-flick and Hargreaves thermal hyperalgesia tests), and mechanical (Randall-Selitto paw pressure test) pain models. Results: XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg-1, p.o.) and XA (10-100 mg kg-1, p.o.) inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg-1, i.p.) and diclofenac (1-10 mg kg-1, i.p.), used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. Conclusions: These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid.
Pharmacognosy Research | 2010
Wonder M. K. Abotsi; Eric Woode; George K. Ainooson; Ama K Amo-Barimah; Eric Boakye-Gyasi
Leaf extracts of Ficus exasperata P. Beauv. (Moraceae) are commonly used in Ghanaian traditional medicine for the treatment of several pathological states including inflammatory disorders. The present study was undertaken to evaluate the antiarthritic effect of an ethanolic extract of F. exasperata (FEE) in the Freunds adjuvant-induced arthritis model in rats. Since free radicals and reactive oxygen species are implicated in inflammatory joint diseases such as rheumatoid arthritis, the antioxidant potential of the extract was investigated in in vitro experimental models. FEE as well as the positive controls, dexamethasone and methotrexate, showed significant dose-dependent antiarthritic properties when applied to established adjuvant arthritis. Oral administration of FEE (30–300 mg/kg p.o.) significantly reduced the arthritic edema in the ipsilateral paw of rats with a maximal inhibition of 34.46 ± 11.42%. FEE (30–300 mg/kg p.o.) also significantly prevented the spread of the edema from the ipsilateral to the contralateral paws indicating inhibition of systemic spread. The disease-modifying antirheumatic drug methotrexate (0.1–1 mg/kg i.p.) and the steroidal anti-inflammatory agent dexamethasone (0.3–3 mg/kg i.p.) also reduced very significantly the total polyarthritic edema as well as the spread of the arthritis from the ipsilateral to the contralateral paws of the treated animals. The extract also exhibited reducing activity (EC50 = 8.105 ± 18.49), scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH, EC50 = 0.499 ± 0.302) and prevented lipid peroxidation (IC50 = 1.283 ± 0.923) in rat brain homogenates. Phenols were detected in the extract. These results suggest that ethanolic extract of the leaves of F. exasperata exerts antiarthritic activity after oral administration and also has antioxidant properties which may contribute to its activity.
Pharmacognosy Research | 2014
Elvis Ofori Ameyaw; Eric Woode; Eric Boakye-Gyasi; Wonder Kofi Mensah Abotsi; James Oppong Kyekyeku; Reimmel Kwame Adosraku
Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including headache and neuralgia. An animal model of vincristine-induced sensory neuropathy was developed after repeated intraperitoneal injection in rats and used in the present work to study the effects of the ethanolic extract of X. aethiopica (XAE) and its diterpene xylopic acid (XA) in vincristine-induced neuropathic pain. Materials and Methods: Vincristine (0.1 mg kg-1 day-1) was administered during two cycles of five consecutive days to induce chemotherapy-induced neuropathic pain. Static tactile anti-allodynic, anti-hyperalgesic, and cold anti-allodynic effects of XAE (30-300 mg kg-1) and XA (10-100 mg kg-1) were assessed using Von Frey filaments of bending forces of 4, 8, and 15 g, the Randall-Selitto paw pressure test, and cold water (4.5°C), respectively. Results: Administration of vincristine caused the development of allodynia and hyperalgesia with no significant motor deficit, spontaneous pain, and foot deformity. XAE (30-300 mg kg-1) and XA (10-100 mg kg-1) exhibited anti-hyperalgesic, tactile, and cold anti-allodynic properties with XA exhibiting greater potency than XAE. Pregabalin (10-100 mg kg-1) used as control produced similar effect. Conclusion: These findings establish the anti-allodynic and anti-hyperalgesic effects of the ethanolic fruit XAE and its major diterpene XA in vincristine-induced neuropathtic pain.
Journal of Ethnopharmacology | 2016
Robert Peter Biney; Charles Kwaku Benneh; Elvis Ofori Ameyaw; Eric Boakye-Gyasi; Eric Woode
ETHNOPHARMACOLOGICAL RELEVANCE Xylopia aethiopica has been used traditionally to treat some central nervous system disorders including epilepsy. AIM OF THE STUDY Despite the central analgesic and sedative effects, there is little evidence for its traditional use for CNS disorders. This study thus assessed the antidepressant potential of Xylopia aethiopica ethanolic fruit extract (XAE). MATERIAL AND METHODS Antidepressant effect was assessed in the forced swim test (FST) and tail suspension test (TST) models in mice. The role of monoamines in the antidepressant effects of XAE was evaluated by selective depletion of serotonin and noradrenaline, whereas involvement of NMDA/nitric oxide was assessed with NMDA receptor co-modulators; d-serine and d-cycloserine and NOS inhibitor, l-NAME. RESULTS Xylopia aethiopica (30, 100, 300mgkg(-1)) dose dependently reduced immobility in both FST and TST. The reduced immobility was reversed after 5-hydroxytryptamine (5-HT) depletion with tryptophan hydroxylase inhibitor-p-chlorophenylalanine (pCPA) and after monoamine depletion with vesicular monoamine transporter inhibitor-reserpine. The observed antidepressant effect was not affected by catecholamine depletion with the tyrosine hydroxylase inhibitor, α-methyl-p-tyrosine (AMPT). Similarly XAE did not potentiate the toxicity of a sub-lethal dose of noradrenaline. XAE had a synergistic effect with the glycineB receptor partial agonist, d-cycloserine and nitric oxide synthase inhibitor, l-NAME. However established antidepressant effects of XAE were abolished by NMDA and NOS activation with d-serine and l-arginine. CONCLUSION This study shows that Xylopia aethiopica has antidepressant potential largely due to effects on 5-HT neurotransmission with possible glutamatergic effect through the glycineB co-binding site and nitric oxide synthase inhibition.
Journal of Ethnopharmacology | 2017
Donatus Wewura Adongo; Priscilla Kolibea Mante; Kennedy Kwami Edem Kukuia; Robert Peter Biney; Eric Boakye-Gyasi; Charles Kwaku Benneh; Elvis Ofori Ameyaw; Eric Woode
ETHNOPHARMACOLOGICAL RELEVANCE Pseudospondias microcarpa (A. Rich) Engl. is a plant used for managing various diseases including central nervous system disorders. AIM OF THE STUDY This study explored the anticonvulsant activity of P. microcarpa hydroethanolic leaf extract (PME) as well as possible mechanism(s) of action in animal models. METHODS Effects of PME was assessed in electroconvulsive (the maximal electroshock and 6-Hz seizures) and chemoconvulsive (pentylenetetrazole-, picrotoxin-, isoniazid-, 4-aminopyridine-, and strychnine-induced seizures) models of epilepsy. In addition, effect of the extract on the nitric oxide pathway and GABAA receptor complex was evaluated. RESULTS The extract (30, 100 and 300mgkg-1, p.o.) significantly delayed the onset as well as decreased the duration and frequency of pentylenetetrazole-, picrotoxin- and strychnine-induced seizures. In addition, PME pre-treatment significantly improved survival in the 4-aminopyridine- and isoniazid-induced seizure tests. Furthermore, the extract protected against 6-Hz psychomotor seizures but had no effect in the maximal electroshock test. The anticonvulsant effect of PME (100mgkg-1, p.o.) was also reversed by pre-treatment with flumazenil, L-arginine or sildenafil. However, L-NAME or methylene blue (MB) augmented its effect. CONCLUSION Results show that PME has anticonvulsant activity and may probably be affecting GABAergic, glycinergic, NMDA, K+ channels and nitric oxide-cGMP pathways to exert its effect.
Journal of basic and clinical pharmacy | 2015
Eric Woode; Elvis Ofori Ameyaw; Wonder Kofi Mensah Abotsi; Eric Boakye-Gyasi
Background: A common practice of managing pain globally is the combination of analgesics and this is aimed at facilitating patient compliance, simplifying prescription, and improving efficacy without increasing adverse effects. Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders and xylopic acid (XA) present in the fruit extract have been shown to possess analgesic properties in animals. There is the likelihood of concomitant use of XA and the commonly used analgesics in traditional settings. This study, therefore, evaluated the pharmacologic interaction between XA/morphine and xylopic/diclofenac combinations. Methods: The formalin test and acetic acid writhing test were used to study the antinociceptive activity of XA, morphine, and diclofenac. The isobolographic analysis was used to study the antinociceptive interactions between XA co-administered with morphine or diclofenac. Results: Results obtained revealed that XA (10–100 mg/kg), morphine (1–10 mg/kg), and diclofenac (1–10 mg/kg) produced dose-related antinociception with different potencies in the formalin and acetic acid writhing tests. Isobolographic analysis of XA/morphine and XA/diclofenac combinations revealed potentiation of their antinociceptive effects. The degree of potentiation calculated as interaction index showed synergism for both combinations in all the nociceptive tests. Conclusion: In conclusion, the present study demonstrated synergism for the co-administration of XA with morphine or diclofenac.
Pharmaceutical Biology | 2017
Wonder Kofi Mensah Abotsi; Stanley Benjamin Lamptey; Stephen Afrane; Eric Boakye-Gyasi; Ruth Uwa Umoh; Eric Woode
Abstract Context: The leaves of Albizia zygia (DC.) J.F. Macbr. (Leguminosae-Mimosoideae) are used in Ghanaian traditional medicine for the treatment of pain, inflammatory disorders and fever (including malaria). Objectives: The present study evaluated the anti-inflammatory, antipyretic and analgesic effects of the hydroethanol leaf extract of Albizia zygia (AZE) in animal models. Materials and methods: The anti-inflammatory and antipyretic effects of AZE were examined in the carrageenan-induced foot oedema model and the baker’s yeast-induced pyrexia test respectively. The analgesic effect and possible mechanisms of action were also assessed in the formalin test. Results: AZE (30–300 mg/kg, p.o.), either preemptively or curatively, significantly inhibited carrageenan-induced foot edema in 7-day-old chicks (ED50 values; preemptive: 232.9 ± 53.33 mg/kg; curative: 539.2 ± 138.28 mg/kg). Similarly, the NSAID diclofenac (10–100 mg/kg, i.p.) significantly reduced the oedema in both preemptive (ED50: 21.16 ± 4.07 mg/kg) and curative (ED50: 44.28 ± 5.75 mg/kg) treatments. The extract (30–300 mg/kg, p.o.) as well as paracetamol (150 mg/kg, p.o.) also showed significant antipyretic activity in the baker’s yeast-induced pyrexia test (ED50 of AZE: 282.5 ± 96.55 mg/kg). AZE and morphine (1–10 mg/kg, i.p.; positive control), exhibited significant analgesic activity in the formalin test. The analgesic effect was partly or wholly reversed by the systemic administration of naloxone, theophylline and atropine. Conclusion: The results suggest that AZE possesses anti-inflammatory, antipyretic and analgesic properties, which justifies its traditional use. Also, the results show the involvement of the opioidergic, adenosinergic and the muscarinic cholinergic pathways in the analgesic effects of AZE.
Journal of Ethnopharmacology | 2017
Wonder Kofi Mensah Abotsi; Stanley Benjamin Lamptey; Eric Boakye-Gyasi; Eric Woode
ETHNOPHARMACOLOGICAL RELEVANCE The root extract of Albizia zygia (DC.) J.F. Macbr. (Leguminosae-Mimosoideae) is traditionally used in the management of pain and fever. However, little scientific data exists in literature to support its use. AIM OF STUDY The present study evaluated the anti-nociceptive and antipyretic properties of the hydroethanolic extract of the roots of Albizia zygia in animal models. MATERIALS AND METHODS The analgesic effects were investigated in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (tail-immersion test) and mechanical (carrageenan-induced hyperalgesia) pain models. Possible mechanisms of anti-nociception were also assessed with antagonists in the formalin test. The anti-pyretic effect was evaluated using the baker yeast-induced pyrexia model in young rats. RESULTS The extract (30-300mg/kg, p.o.) and positive controls, diclofenac (3-30mg/kg, i.p.) and morphine (1-10mg/kg, i.p.), significantly (at least P<0.01) attenuated acetic acid-induced visceral pain, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical hyperalgesia in animals. The anti-nociceptive effect of the extract was reversed (at least P<0.05) by the pre-emptive administration of naloxone and atropine; the administration of theophylline, however, exhibited no significant (P>0.05) inhibition of anti-nociception. The extract (30-300mg/kg, p.o) and paracetamol (15-150mg/kg, p.o.) both reversed yeast-induced pyrexia in rats with ED50 values of 48.59±2.59 and 26.19±1.33mg/kg respectively. CONCLUSION The findings indicate that the extract possesses significant anti-nociceptive and antipyretic effects which justify its traditional use in the management of pain and fever. Also, anti-nociceptive effect of the extract involves opioidergic and muscarinic cholinergic mechanisms.
Pharmaceutical Biology | 2016
Eric Woode; Elvis Ofori Ameyaw; Eric Boakye-Gyasi; Wonder Kofi Mensah Abotsi; James Oppong Kyekyeku; Reimmel Kwame Adosraku; Robert Peter Biney
Abstract Context: Fruits of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) are used traditionally to manage arthritis, headache and other pain disorders. Objective: The analgesic properties of the X. aethiopica ethanol fruit extract (XAE) and xylopic acid (XA) were evaluated in musculoskeletal pain models. Materials and methods: Acute muscle pain was induced in gastrocnemius muscle of Sprague–Dawley rats with 3% carrageenan (i.m.). Rats received XAE (30–300 mg/kg), XA (10–100 mg/kg) or morphine (1–10 mg/kg) after 12 h. Effects of XAE and XA on muscle pain were assessed by measuring post-treatment grip strength of the rats. Chronic muscle pain was similarly induced, but drug treatment was on the eighth day and effects of XAE and XA assessed with Randall–Selitto test for hyperlagesia. Acute-skeletal pain was induced in knee joints of rats with 3% carrageenan-kaolin mixture and effects determined 12-h later. Similar induction protocol was used for chronic knee pain with treatment and measurement as done for chronic muscle pain. Results: XAE and XA significantly and dose-dependently ameliorated both acute muscle (ED50 mg/kg: XAE = 22.9; XA = 6.2) and skeletal hyperalgesia (XAE = 39.9; XA = 17.7) induced by 3% carrageenan. Similarly, chronic skeletal hyperalgesia was reduced by XAE and XA treatment similar to morphine (ED50: XAE = 13.0; XA = 4.6). This reduction was also seen in chronic muscle hyperalgesia (ED50: XAE = 79.1; XA = 42.7). XAE and XA significantly reduced the spread of hyperalgesia to contralateral limbs in both models of chronic hyperalgesia. Conclusion: These findings establish analgesic properties of the ethanol fruit extract of X. aethiopica and xylopic acid in musculoskeletal pain.
The Scientific World Journal | 2018
Donatus Wewura Adongo; Priscilla Kolibea Mante; Kennedy Kwami Edem Kukuia; Charles Kwaku Benneh; Robert Peter Biney; Eric Boakye-Gyasi; Nicholas Titiloye; Eric Woode
Pseudospondias microcarpa is used traditionally for treating various diseases. However, although parts of the plant are extensively used in African traditional medicine, no scientific study has been reported on its toxicity. Therefore, this study evaluated the acute and subacute toxicity studies of the ethanolic extract of P. microcarpa in rats. Male Sprague-Dawley rats (120–150 g) were treated orally with the extract (30, 100, 300, 1000, and 3000 mg kg−1) or distilled water (10 ml kg−1) for 2 weeks and observed daily for general appearance and signs of toxicity. In addition, blood was collected for both biochemical and haematological assays. Sections of tissues from liver, kidney, spleen, brain, and stomach were also used for histopathological examination. Administration of the extract for 14 consecutive days caused no deaths, with an LD50 above 3000 mg kg−1. Except for lymphocytes (%) that showed a significant decrease (F5,23 = 3.93, P = 0.013), all other haematological parameters remained unaffected by the extract. The extract at 100 mg kg−1 showed a significant decrease in the levels of triglyceride and very-low-density lipoproteins (both at P < 0.05). Weight change as well as histological evaluation of the organs indicated no toxicity. The study demonstrates that an ethanolic extract of P. microcarpa given orally to rats is safe.