Eric Bousquet
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Bousquet.
Nature | 2008
Eric Bousquet; Matthew Dawber; Nicolas Stucki; Céline Lichtensteiger; Patrick Hermet; Stefano Gariglio; Jean-Marc Triscone; Philippe Ghosez
Ferroelectric thin films and superlattices are currently the subject of intensive research because of the interest they raise for technological applications and also because their properties are of fundamental scientific importance. Ferroelectric superlattices allow the tuning of the ferroelectric properties while maintaining perfect crystal structure and a coherent strain, even throughout relatively thick samples. This tuning is achieved in practice by adjusting both the strain, to enhance the polarization, and the composition, to interpolate between the properties of the combined compounds. Here we show that superlattices with very short periods possess a new form of interface coupling, based on rotational distortions, which gives rise to ‘improper’ ferroelectricity. These observations suggest an approach, based on interface engineering, to produce artificial materials with unique properties. By considering ferroelectric/paraelectric PbTiO3/SrTiO3 multilayers, we first show from first principles that the ground-state of the system is not purely ferroelectric but also primarily involves antiferrodistortive rotations of the oxygen atoms in a way compatible with improper ferroelectricity. We then demonstrate experimentally that, in contrast to pure PbTiO3 and SrTiO3 compounds, the multilayer system indeed behaves like a prototypical improper ferroelectric and exhibits a very large dielectric constant of εr ≈ 600, which is also fairly temperature-independent. This behaviour, of practical interest for technological applications, is distinct from that of normal ferroelectrics, for which the dielectric constant is typically large but strongly evolves around the phase transition temperature and also differs from that of previously known improper ferroelectrics that exhibit a temperature-independent but small dielectric constant only.
Physical Review Letters | 2009
Satadeep Bhattacharjee; Eric Bousquet; Philippe Ghosez
Structural instabilities of CaMnO3 are investigated from first principles. We point out that, on top of a strong antiferrodistortive instability responsible for its orthorhombic ground state, the cubic perovskite structure of CaMnO3 also exhibits a weak ferroelectric instability. Although ferroelectricity is suppressed by antiferrodistortive motions, we show that it can be favored using strain or chemical engineering in order to make CaMnO3 multiferroic. We finally highlight that the ferroelectric instability of CaMnO3 is Mn-dominated. This illustrates that, contrary to common belief, ferroelectricity and magnetism are not necessarily exclusive but can be driven by the same cation.
Applied Physics Letters | 2006
Grégory Geneste; Eric Bousquet; Javier Junquera; Philippe Ghosez
The size dependence of the ferroelectric properties of BaTiO3 nanowires is studied from first principles. We show that the ferroelectric distortion along the wire axis disappears below a critical diameter of about 1.2nm. This disappearance is related to a global contraction of the unit cell resulting from low atomic coordinations at the wire surface. It is shown that a ferroelectric distortion can be recovered under appropriate tensile strain conditions.
Physical Chemistry Chemical Physics | 2010
Christine Frayret; Antoine Villesuzanne; Nicola A. Spaldin; Eric Bousquet; Jean -Noel Chotard; Nadir Recham; Jean-Marie Tarascon
A theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural evolution and average voltages versus a lithium electrode, we have applied partial density of states and Baders topological analysis of the electron density to the study of lithium deintercalation. Upon lithium extraction, charge rearrangement occurs for nickel between different d-orbitals, but with little net positive charge gain, while cobalt and iron atoms end up with a clear oxidized state. The participation of oxygen ions in accepting the electron of the lithium is thus enhanced for LiNiSO(4)F. However, this effect does not affect the long-range electrostatic interactions a lot in the lithiated phase, since the valence of all transition metals is very close due to initial lower oxidized state for the Ni atom in the host. It is found that this is not essentially a long-range electrostatic interaction within the lithiated phase but within the host which explains, at least partly, the increase in voltage by passing from Fe to Ni. Our results also shed light upon the possibility of getting an approximate evaluation of the local strain associated with delithiation from the atomic volume evolutions, which are also likely to affect the electrochemical potential.
Physical Review Letters | 2010
Eric Bousquet; Nicola A. Spaldin; Philippe Ghosez
Using first-principles density functional calculations, we show that ferroelectricity can be induced in simple alkaline-earth-metal binary oxides such as barium oxide (BaO) using appropriate epitaxial strains. Going beyond the fundamental discovery, we highlight that the functional properties (polarization, dielectric constant, and piezoelectric response) of such strained binary oxides are comparable in magnitude to those of typical ferroelectric perovskite oxides, making them of direct interest for applications. Finally, we show that magnetic binary oxides such as EuO, with the same rocksalt structure, behave similarly to the alkaline-earth-metal oxides, suggesting a route to new multiferroics combining ferroelectric and magnetic properties.
Physical Review B | 2006
Laurent Despont; Christian Koitzsch; F. Clerc; Manuela Garnier; Philipp Aebi; Céline Lichtensteiger; Jean-Marc Triscone; F. J. García de Abajo; Eric Bousquet; Philippe Ghosez
X-ray photoelectron diffraction is used to directly probe the intracell polar atomic distortion and tetragonality associated with ferroelectricity in ultrathin epitaxial PbTiO{sub 3} films. Our measurements, combined with ab initio calculations, unambiguously demonstrate noncentrosymmetry in films a few unit cells thick, imply that films as thin as three unit cells still preserve a ferroelectric polar distortion, and also show that there is no thick paraelectric dead layer at the surface.
Nature Communications | 2015
Nicholas C. Bristowe; Julien Varignon; Denis Fontaine; Eric Bousquet; Philippe Ghosez
In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn–Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hunds rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented.
Nature Communications | 2016
Daniel Sando; Yurong Yang; Eric Bousquet; C. Carrétéro; Vincent Garcia; S. Fusil; Daniel Dolfi; A. Barthélémy; Philippe Ghosez; L. Bellaiche; M. Bibes
The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology—a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption—reminiscent of piezochromism—which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses.
Scientific Reports | 2015
Julien Varignon; Nicholas C. Bristowe; Eric Bousquet; Philippe Ghosez
Perovskite oxides are already widely used in industry and have huge potential for novel device applications thanks to the rich physical behaviour displayed in these materials. The key to the functional electronic properties exhibited by perovskites is often the so-called Jahn-Teller distortion. For applications, an electrical control of the Jahn-Teller distortions, which is so far out of reach, would therefore be highly desirable. Based on universal symmetry arguments, we determine new lattice mode couplings that can provide exactly this paradigm, and exemplify the effect from first-principles calculations. The proposed mechanism is completely general, however for illustrative purposes, we demonstrate the concept on vanadium based perovskites where we reveal an unprecedented orbital ordering and Jahn-Teller induced ferroelectricity. Thanks to the intimate coupling between Jahn-Teller distortions and electronic degrees of freedom, the electric field control of Jahn-Teller distortions is of general relevance and may find broad interest in various functional devices.
Physical Review B | 2013
Jun Hee Lee; Kris T. Delaney; Eric Bousquet; Nicola A. Spaldin; Karin M. Rabe
First-principles calculations reveal a large cooperative coupling of Jahn-Teller (JT) distortion to oxygen-octahedron rotations in perovskite LaMnO 3 . The combination of the two distortions is responsible for stabilizing the strongly orthorhombic A -AFM insulating (I ) ePbnm ground state relative to a metallic ferromagnetic (FM-M ) phase. However, epitaxial strain due to coherent matching to a crystalline substrate can change the relative stability of the two states. In particular, coherent matching to a square-lattice substrate favors the less orthorhombic FM-M phase, with the A -AFM phase stabilized at higher values of tensile epitaxial strain due to its larger volume per formula unit, resulting in a coupled magnetic and metal-insulator transition at a critical strain close to 1%. At the phase boundary, a very large magnetoresistance is expected. Tensile epitaxial strain enhances the JT distortion and opens the band gap in the A -AFM-I c -ePbnm phase, offering the opportunity for band-gap engineering. Compressive epitaxial strain induces a transition within the FM-M phase from the c -ePbnm orientation to the ab -ePbnm orientation with a change in the direction of the magnetic easy axis relative to the substrate, yielding strain-controlled magnetization at the phase boundary. Similar behavior is expected in other JT active Pbnm perovskites.