Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric C. Beyer is active.

Publication


Featured researches published by Eric C. Beyer.


The Journal of Membrane Biology | 1990

Connexin family of gap junction proteins.

Eric C. Beyer; David L. Paul; Daniel A. Goodenough

Gap junctions are composed of aggregations of membrane channels, called connexons, joined with similar connexons in adjacent cells to form intercellular pathways for the diffusion of ions and small molecules (Caspar et al., 1977; Makowski et al., 1977). The resulting intercellular communication is unique in that adjacent cells exchange cytoplasmic molecules directly, with no secretion into the extracellular space (Bennett, 1966; Loewenstein, 1966). Due to the large size of the intercellular channels formed by connexon pairs, the exchange of molecules between cells is nonspecific, and includes the entire pool of ions and small metabolites in each cell (Gilula, Reeves & Steinbach, 1972; Pitts & Simms, 1977; Simpson, Rose & Loewenstein, 1977; Goodenough, Dick & Lyons, 1980). This form of intercellular communication is ideally suited for the role of intercellular buffering of cytoplasmic ions (Corsaro & Migeon, 1977; Ledbetter & Lubin, 1979), synchronization of cellular behavior, such as the coordinated contraction of myocardial cells (Barr, Dewey & Berger, 1965) and the cell-to-cell coordination of metachronal waves (Moss & Tamm, 1987; Sanderson, Chow & Dirksen, 1988). Involvement of gap junction-mediated intercellular communication has also been suggested for growth control and embryonic differentiation (Loewenstein, 1966; Furshpan & Potter, 1968; Warner, Guthrie & Gilula, 1984; Loewenstein & Azarnia, 1988). Due to the sharing of low molecular weight substrate pools, gap junctions will also function to suppress the deleterious effects of somatic cell mutation in a variety of enzymes (Subak-Sharpe, Burk & Pitts, 1969; Cox et al., 1970).


Circulation Research | 2000

Dephosphorylation and Intracellular Redistribution of Ventricular Connexin43 During Electrical Uncoupling Induced by Ischemia

Michael A. Beardslee; Deborah L. Lerner; Peter N. Tadros; James G. Laing; Eric C. Beyer; Kathryn A. Yamada; André G. Kléber; Richard B. Schuessler; Jeffrey E. Saffitz

Electrical uncoupling at gap junctions during acute myocardial ischemia contributes to conduction abnormalities and reentrant arrhythmias. Increased levels of intracellular Ca2+ and H+ and accumulation of amphipathic lipid metabolites during ischemia promote uncoupling, but other mechanisms may play a role. We tested the hypothesis that uncoupling induced by acute ischemia is associated with changes in phosphorylation of the major cardiac gap junction protein, connexin43 (Cx43). Adult rat hearts perfused on a Langendorff apparatus were subjected to ischemia or ischemia/reperfusion. Changes in coupling were monitored by measuring whole-tissue resistance. Changes in the amount and distribution of phosphorylated and nonphosphorylated isoforms of Cx43 were measured by immunoblotting and confocal immunofluorescence microscopy using isoform-specific antibodies. In control hearts, virtually all Cx43 identified immunohistochemically at apparent intercellular junctions was phosphorylated. During ischemia, however, Cx43 underwent progressive dephosphorylation with a time course similar to that of electrical uncoupling. The total amount of Cx43 did not change, but progressive reduction in total Cx43 immunofluorescent signal and concomitant accumulation of nonphosphorylated Cx43 signal occurred at sites of intercellular junctions. Functional recovery during reperfusion was associated with increased levels of phosphorylated Cx43. These observations suggest that uncoupling induced by ischemia is associated with dephosphorylation of Cx43, accumulation of nonphosphorylated Cx43 within gap junctions, and translocation of Cx43 from gap junctions into intracellular pools.


Circulation Research | 1998

Rapid Turnover of Connexin43 in the Adult Rat Heart

Michael A. Beardslee; James G. Laing; Eric C. Beyer; Jeffrey E. Saffitz

Remodeling of the distribution of gap junctions is an important feature of anatomic substrates of arrhythmias in patients with healed myocardial infarcts. Mechanisms underlying this process are poorly understood but probably involve changes in gap junction protein (connexin) synthesis, assembly into channels, and degradation. The half-life of the principal cardiac gap junction protein, connexin43 (Cx43), is only 1.5 to 2 hours in primary cultures of neonatal myocytes, but it is unknown whether rapid turnover of Cx43 occurs in the adult heart or is unique to disaggregated neonatal myocytes that are actively reestablishing connections in vitro. To characterize connexin turnover dynamics in the adult heart and to elucidate its potential role in remodeling of gap junctions, we measured Cx43 turnover kinetics and characterized the proteolytic pathways involved in Cx43 degradation in isolated perfused adult rat hearts. Hearts were labeled for 40 minutes with Krebs-Henseleit buffer containing [35S]methionine, and then chase perfusions were performed with nonradioactive buffer for 0, 60, 120, and 240 minutes. Quantitative immunoprecipitation assays of Cx43 radioactivity in 4 hearts at each time point yielded a monoexponential decay curve indicating a Cx43 half-life of 1.3 hours. Proteolytic pathways responsible for Cx43 degradation were elucidated by perfusing isolated rat hearts for 4 hours with specific inhibitors of either lysosomal or proteasomal proteolysis. Immunoblot analysis demonstrated significant increases ( approximately 30%) in Cx43 content in hearts perfused with either lysosomal or proteasomal pathway inhibitors. Most of the Cx43 in hearts perfused with lysosomal inhibitors consisted of phosphorylated isoforms, whereas nonphosphorylated Cx43 accumulated selectively in hearts perfused with a specific proteasomal inhibitor. These results indicate that Cx43 turns over rapidly in the adult heart and is degraded by multiple proteolytic pathways. Regulation of Cx43 degradation could play an important role in gap junction remodeling in response to cardiac injury.


Molecular and Cellular Biology | 1990

Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts.

D S Crow; Eric C. Beyer; David L. Paul; S S Kobe; A.F. Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


The Journal of Membrane Biology | 1990

Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning, ultrastructural localization, and post-translational phosphorylation

Linda S. Musil; Eric C. Beyer; Daniel A. Goodenough

SummaryLens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.


Journal of Clinical Investigation | 1997

Slow ventricular conduction in mice heterozygous for a connexin43 null mutation.

Patricia A. Guerrero; Richard B. Schuessler; Lloyd M. Davis; Eric C. Beyer; Carolyn M. Johnson; Kathryn A. Yamada; Jeffrey E. Saffitz

To characterize the role of the gap junction protein connexin43 (Cx43) in ventricular conduction, we studied hearts of mice with targeted deletion of the Cx43 gene. Mice homozygous for the Cx43 null mutation (Cx43 -/-) die shortly after birth. Attempts to record electrical activity in neonatal Cx43 -/- hearts (n = 5) were unsuccessful. Ventricular epicardial conduction of paced beats, however, was 30% slower in heterozygous (Cx43 -/+) neonatal hearts (0.14+/-0.04 m/s, n = 27) than in wild-type (Cx43 +/+) hearts (0.20+/-0.07 m/s, n = 32; P < 0.001). This phenotype was even more severe in adult mice; ventricular epicardial conduction was 44% slower in 6-9 mo-old Cx43 -/+ hearts (0.18+/-0.03 m/s, n = 5) than in wild-type hearts (0.32+/-0.07 m/s, n = 7, P < 0.001). Electrocardiograms revealed significant prolongation of the QRS complex in adult Cx43 -/+ mice (13.4+/-1.8 ms, n = 13) compared with Cx43 +/+ mice (11.5+/-1.4 ms, n = 12, P < 0.01). Whole-cell recordings of action potential parameters in cultured disaggregated neonatal ventricular myocytes from Cx43 -/+ and +/+ hearts showed no differences. Thus, reduction in the abundance of a major cardiac gap junction protein through targeted deletion of a Cx43 allele directly leads to slowed ventricular conduction.


Cell | 1989

Formation of gap junctions by expression of connexins in Xenopus oocyte pairs

Katherine I. Swenson; John R. Jordan; Eric C. Beyer; David L. Paul

RNAs coding for connexins 32, 43, and the putative lens gap junction protein MP26 were tested for their ability to induce cell-cell coupling in Xenopus oocyte pairs. Large, voltage-insensitive conductances developed when connexin32 and 43 RNA-injected oocytes were paired both with themselves and with each other. Oocyte pairs injected with water manifested small conductances, which were symmetrically voltage-dependent. MP26 RNA-injected pairs displayed no conductances above control values. Unexpectedly, connexin43/water oocyte pairs developed high, asymmetrically voltage-dependent conductances, a property not displayed by the connexin32/water pairs. In single oocytes, these proteins remained intracellular until pairing, at which time the connexins, but not MP26, concentrated at the appositional areas.


Circulation Research | 1994

Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.

Jeffrey E. Saffitz; H L Kanter; Karen G. Green; T. K. Tolley; Eric C. Beyer

Electrical conduction is very rapid and highly anisotropic in atrial fiber bundles, such as the crista terminalis. In contrast to left ventricular myocardium in which the ratio of longitudinal to transverse conduction velocities is approximately 3, propagation velocity in the crista terminalis is approximately 10 times greater in the longitudinal than in the transverse direction. To elucidate potential determinants of these distinct conduction properties, we characterized structural and molecular features of intercellular coupling in the crista terminalis and left ventricular myocardium of the canine heart. Analysis of the number and spatial orientation of myocyte interconnections at gap junctions revealed that a typical left ventricular myocyte was connected to 11.3 +/- 2.2 other myocytes. Approximately equal numbers of connections occurred between ventricular myocytes juxtaposed in side-to-side and end-to-end orientation. In contrast, a typical myocyte of the crista terminalis was connected to only 6.4 +/- 1.7 other cells (P < .05), but nearly 80% of these connections occurred between cells oriented in an end-to-end configuration. In comparison with the ventricular pattern, this spatial distribution of connections would limit intercellular current transfer between laterally apposed cells and thereby enhance anisotropy of conduction velocity in the longitudinal and transverse directions. Ultrastructural analysis showed that crista terminalis myocytes were connected by numerous small gap junctions that occurred in relatively simple, straight intercalated disks. Northern blot analysis showed approximately equivalent amounts of mRNAs encoding the gap junction channel proteins connexin43 and connexin45 but approximately four times more connexin40 mRNA in crista terminalis than in the left ventricle.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Biological Chemistry | 1995

THE GAP JUNCTION PROTEIN CONNEXIN43 IS DEGRADED VIA THE UBIQUITIN PROTEASOME PATHWAY

James G. Laing; Eric C. Beyer

We investigated the degradation of the gap junction protein connexin43 in E36 Chinese hamster ovary cells and rat cardiomyocyte-derived BWEM cells. Treatment of E36 cells with the lysosomotropic amine, primaquine, for 16 h doubled the amount of connexin43 detected by immunoblotting and modestly increased the half-life of connexin43 in pulse-chase studies, suggesting that the lysosome played a minor role in connexin43 proteolysis. In contrast, treatment with the proteasomal inhibitor N-acetyl-L-leucyl-L-leucinyl-norleucinal led to a 6-fold accumulation of connexin43 and increased the half-life of connexin43 to 9 h. The role of ubiquitin in connexin43 degradation was examined in an E36-derived mutant, ts20, which contains a thermolabile ubiquitin-activating enzyme, E1. E36 and ts20 cells grown at the permissive temperature contained similar amounts of connexin43 detectable by immunoblotting. Heat treatment dramatically reduced the amount of connexin43 detected in E36 cells, while connexin43 levels in heat-treated ts20 cells did not change. E36 cells that were heat-treated in the presence of N-acetyl-L-leucyl-L-leucinyl-norleucinal did not lose their connexin43. Pulse-chase experiments showed the reversibility of the block to connexin43 degradation in ts20 cells that were returned to the permissive temperature. Finally, sequential immunoprecipitation using anti-connexin43 and anti-ubiquitin antibodies demonstrated polyubiquitination of connexin43. These results indicate that ubiquitin-mediated proteasomal proteolysis may be the major mechanism of degradation of connexin43.


Circulation | 1998

Disparate Effects of Deficient Expression of Connexin43 on Atrial and Ventricular Conduction Evidence for Chamber-Specific Molecular Determinants of Conduction

Suma A. Thomas; Richard B. Schuessler; Charles I. Berul; Michael A. Beardslee; Eric C. Beyer; Michael E. Mendelsohn; Jeffrey E. Saffitz

BACKGROUND Myocardial conduction depends on intercellular transfer of current at gap junctions. Atrial myocytes express three different gap junction channel proteins-connexin43 (Cx43), connexin45 (Cx45), and connexin40 (Cx40)-- whereas ventricular myocytes express only Cx43 and Cx45. However, the physiological roles of individual connexins are unknown. We have previously shown that mice heterozygous for a null mutation in the gene encoding Cx43 (Cx43(+/-) mice) express 50% of the normal amount of Cx43 in ventricular myocardium and exhibit marked slowing of ventricular conduction. METHODS AND RESULTS To determine whether atrial conduction is affected in Cx43(+/-) mice, we measured atrial conduction velocity in isolated hearts, performed detailed ECG and electrophysiological studies in intact animals, and determined the amount of cardiac connexins in atrial and ventricular tissue. Ventricular conduction velocity was reduced by 38% in Cx43(+/-) mice compared with wild-types, but atrial conduction velocity in the same hearts was normal. QRS duration was significantly greater in Cx43(+/-) mice than in wild-types, but P-wave duration and amplitude did not differ. Atrial expression of Cx43 was reduced by 50%. CONCLUSIONS These results indicate that Cx43 is a principal conductor of intercellular current in the ventricle because ventricular conduction is significantly slowed when Cx43 content is reduced by only 50%. In contrast, a similar reduction in Cx43 content in atrial muscle has no effect on atrial conduction, suggesting that Cx40 (which is expressed in atrial but not ventricular myocytes) is a major electrical coupling protein in atrial muscle. Thus, Cx43 and Cx40 may be chamber-specific determinants of myocardial conduction.

Collaboration


Dive into the Eric C. Beyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey E. Saffitz

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Veenstra

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Lisa Ebihara

Rosalind Franklin University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

James G. Laing

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eileen M. Westphale

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge