Eric C. Carnes
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric C. Carnes.
Nature Materials | 2011
Carlee E. Ashley; Eric C. Carnes; Genevieve K Phillips; David Padilla; Paul N. Durfee; Page A. Brown; Tracey N. Hanna; Juewen Liu; Brandy Phillips; Mark B. Carter; Nick J. Carroll; Xingmao Jiang; Darren R. Dunphy; Cheryl L. Willman; Dimiter N. Petsev; Deborah G. Evans; Atul N. Parikh; Bryce Chackerian; Walker Wharton; David S. Peabody; C. Jeffrey Brinker
Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability, and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma (HCC) exhibit a 10,000-fold greater affinity for HCC than for hepatocytes, endothelial cells, and immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, siRNA, and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer allow a single protocell loaded with a drug cocktail to kill a drug-resistant HCC cell, representing a 106-fold improvement over comparable liposomes.
Nature Chemical Biology | 2010
Eric C. Carnes; DeAnna M. Lopez; Niles P. Donegan; Ambrose L. Cheung; Hattie Gresham; Graham S. Timmins; C. Jeffrey Brinker
It is postulated that in addition to cell density, other factors such as the dimensions and diffusional characteristics of the environment could influence quorum sensing (QS) and induction of genetic reprogramming. Modeling studies predict that QS may operate at the level of a single cell, but, owing to experimental challenges, the potential benefits of QS by individual cells remain virtually unexplored. Here we report a physical system that mimics isolation of a bacterium, such as within an endosome or phagosome during infection, and maintains cell viability under conditions of complete chemical and physical isolation. For Staphylococcus aureus, we show that quorum sensing and genetic reprogramming can occur in a single isolated organism. Quorum sensing allows S. aureus to sense confinement and to activate virulence and metabolic pathways needed for survival. To demonstrate the benefit of confinement-induced quorum sensing to individuals, we showed that quorum-sensing bacteria have significantly greater viability over non-QS bacteria.
ACS Nano | 2011
Carlee E. Ashley; Eric C. Carnes; Genevieve K Phillips; Paul N. Durfee; Buley; Christopher A. Lino; David Padilla; Brandy Phillips; Mark B. Carter; Cheryl L. Willman; Brinker Cj; Caldeira Jdo C; Bryce Chackerian; Walker Wharton; David S. Peabody
Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical conjugation, facilitating the multivalent display of targeting ligands. MS2 VLPs also self-assemble in the presence of nucleic acids to specifically encapsidate siRNA and RNA-modified cargos. Here we report the use of MS2 VLPs to selectively deliver nanoparticles, chemotherapeutic drugs, siRNA cocktails, and protein toxins to human hepatocellular carcinoma (HCC). MS2 VLPs modified with a peptide (SP94) that binds HCC exhibit a 10(4)-fold higher avidity for HCC than for hepatocytes, endothelial cells, monocytes, or lymphocytes and can deliver high concentrations of encapsidated cargo to the cytosol of HCC cells. SP94-targeted VLPs loaded with doxorubicin, cisplatin, and 5-fluorouracil selectively kill the HCC cell line, Hep3B, at drug concentrations <1 nM, while SP94-targeted VLPs that encapsidate a siRNA cocktail, which silences expression of cyclin family members, induce growth arrest and apoptosis of Hep3B at siRNA concentrations <150 pM. Impressively, MS2 VLPs, when loaded with ricin toxin A-chain (RTA) and modified to codisplay the SP94 targeting peptide and a histidine-rich fusogenic peptide (H5WYG) that promotes endosomal escape, kill virtually the entire population of Hep3B cells at an RTA concentration of 100 fM without affecting the viability of control cells. Our results demonstrate that MS2 VLPs, because of their tolerance of multivalent peptide display and their ability to specifically encapsidate a variety of chemically disparate cargos, induce selective cytotoxicity of cancer in vitro and represent a significant improvement in the characteristics of VLP-based delivery systems.
Journal of the American Chemical Society | 2013
Jason L. Townson; Yu Shen Lin; Jacob O. Agola; Eric C. Carnes; Hon S. Leong; John D. Lewis; Christy L. Haynes; C. Jeffrey Brinker
The combination of nanoparticle (NP) size, charge, and surface chemistry (e.g., extent of modification with polyethylene glycol (PEG)) is accepted as a key determinant of NP/cellular interactions. However, the influence of spatial arrangement and accessibility of the charged molecules on the NP surface vis-à-vis the average surface charge (zeta (ζ) potential) is incompletely understood. Here we demonstrate that two types of mesoporous silica nanoparticles (MSNP) that are matched in terms of primary and hydrodynamic particle size, shape, pore structure, colloidal stability, and ζ potential, but differ in surface chemistry, viz. the spatial arrangement and relative exposure of surface amines, have profoundly different interactions with cells and tissues when evaluated in vitro and in vivo. While both particles are ∼50 nm in diameter, PEGylated, and positively charged (ζ = +40 mV), PEG-PEI (MSNPs modified with exposed polyamines), but not PEG-NMe3(+) (MSNP modified with distributed, obstructed amines) rapidly bind serum proteins, diverse cells types in vitro, and endothelial and white blood cells in vivo (ex ovo chick embryo model). This finding helps elucidate the relative role of surface exposure of charged molecules vs ζ potential in otherwise physicochemically matched MSNP and highlights protein corona neutrality as an important design consideration when synthesizing cationic NPs for biological applications.
Biochimica et Biophysica Acta | 2011
Helen K. Baca; Eric C. Carnes; Carlee E. Ashley; DeAnna M. Lopez; Cynthia Douthit; Shelly Karlin; C. Jeffrey Brinker
BACKGROUND The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. SCOPE OF REVIEW This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1]. MAJOR CONCLUSIONS We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying-yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification. GENERAL SIGNIFICANCE Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Langmuir | 2009
Darren R. Dunphy; Todd M. Alam; Michael P. Tate; Hugh W. Hillhouse; Bernd M. Smarsly; Andrew D. Collord; Eric C. Carnes; Helen K. Baca; Ralf Köhn; Michael Sprung; Jin Wang; C. Jeffrey Brinker
The nanostructure of silica and hybrid thin film mesophases templated by phospholipids via an evaporation-induced self-assembly (EISA) process was investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Diacyl phosphatidylcholines with two tails of 6 or 8 carbons were found to template 2D hexagonal mesophases, with the removal of lipid from these lipid/silica films by thermal or UV/O3 processing resulting in a complete collapse of the pore volume. Monoacyl phosphatidylcholines with single tails of 10-14 carbons formed 3D micellular mesophases; the lipid was found to be extractable from these 3D materials, yielding a porous material. In contrast to pure lipid/silica thin film mesophases, films formed from the hybrid bridged silsesquioxane precursor bis(triethoxysilyl)ethane exhibited greater stability toward (both diacyl and monoacyl) lipid removal. Ellipsometric, FTIR, and NMR studies show that the presence of phospholipid suppresses siloxane network formation, while actually promoting condensation reactions in the hybrid material. 1D X-ray scattering and FTIR data were found to be consistent with strong interactions between lipid headgroups and the silica framework.
Journal of the American Chemical Society | 2009
Eric C. Carnes; Jason C. Harper; Carlee E. Ashley; DeAnna M. Lopez; Lina M. Brinker; Juewen Liu; Seema Singh; Susan M. Brozik; C. Jeffrey Brinker
A simple procedure for introducing functional exogenous membrane-bound proteins to viable cells encapsulated within a lipid templated silica nanostructure is described. In one method, bacteriorhodopsin (bR) was added directly to a Saccharomyces cerevisiae solution along with short zwitterionic diacylphosphatidylcholines (diC(6) PC) and mixed with equal volumes of a sol precursor solution. Alternatively, bR was first incorporated into liposomes (bR-proteoliposomes) and then added to an S. cerevisiae solution with diC(6) PC, and this was followed by mixing with sol precursor solution. Films prepared from bR added directly to diC(6) PC resulted in bR localization near S. cerevisiae cells in a disordered and diffuse fashion, while films prepared from bR-proteoliposomes added to the diC(6) PC/yeast solution resulted in preferential localization of bR near yeast cell surfaces, forming bR-containing multilayer vesicles. Importantly, bR introduced via proteoliposomes was observed to modulate pH gradients developed at the cell surface, demonstrating both retained functionality and preferential orientation. Localization of liposome lipid or bR did not occur around neutrally charged latex beads acting as cell surrogates, demonstrating that living cells actively organize the multilayered lipid during evaporation-induced self-assembly. We expect this simple procedure for introducing functional and oriented membrane-bound proteins to the surface of cells to be general and adaptable to other membrane-bound proteins. This advance may prove useful in fundamental studies of membrane protein function and cell-cell signaling and in imparting non-native characteristics to arbitrary cells.
Small | 2011
Carlee E. Ashley; Darren R. Dunphy; Zhang Jiang; Eric C. Carnes; Zhen Yuan; Dimiter N. Petsev; Plamen Atanassov; Orlin D. Velev; Michael Sprung; Jin Wang; David S. Peabody; C. Jeffrey Brinker
The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Qβ show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone.
ACS Nano | 2015
Patrick E. Johnson; Pavan Muttil; Debra A. MacKenzie; Eric C. Carnes; Jennifer Pelowitz; Nathan A. Mara; William M. Mook; Stephen D. Jett; Darren R. Dunphy; Graham S. Timmins; C. Jeffrey Brinker
Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines; it also allows the study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes. Here, we report a spray-drying process enabling the large-scale production of functional nano-biocomposites (NBCs) containing living cells within ordered 3D lipid-silica nanostructures. The spray-drying process is demonstrated to work with multiple cell types and results in dry powders exhibiting a unique combination of properties including highly ordered 3D nanostructure, extended lipid fluidity, tunable macromorphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed a Youngs modulus and hardness of 13 and 1.4 GPa, respectively. We hypothesized this high strength would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in a NBC-induced VBNC, less than 1 in 10,000 cells underwent resuscitation. The NBC platform production of large quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBCs may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines.
Archive | 2012
Carlee E. Ashley; Eric C. Carnes; Bryan Kaehr; Jason C. Harper; C. Jeffrey Brinker
This project pursued two complementary, interrelated goals: 1) the incorporation of individual or groups of bacterial, fungal, or mammalian cells within novel three-dimensional (3D) cell-built or lithographically defined matrices that provide an engineered chemical and physical background to inform cells and direct their behavior; and 2) the development of two classes of targeted nanoparticle delivery platforms, protocells (porous nanoparticle supported lipid bilayers) and virus-like particles (VLPs), which could be selected against dormant/drug resistant/metastatic cells and selectively deliver multicomponent cargos (cocktails) to this recalcitrant population. This project provided a unique means to understand environmental influences on cellular behavior, in particular, dormancy, drug resistance, metastasis and