Eric C. Le Ru
Wellington Management Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric C. Le Ru.
Journal of the American Chemical Society | 2009
Evan J. Blackie; Eric C. Le Ru; P. G. Etchegoin
Single-molecule surface-enhanced Raman scattering (SERS) detection of nonresonant molecules is demonstrated experimentally using the bianalyte SERS method. To this end, bianalyte SERS is performed at 633 nm excitation using the nonresonant molecule 1,2-di-(4-pyridyl)-ethylene (BPE) in combination with a benzotriazole derivative as a partner. The results are then extended to the even more challenging case of a small nonresonant molecule, adenine, using an isotopically substituted adenine as bianalyte SERS partners. In addition, SERS cross sections of single-molecule events are quantified, thus providing estimates of the enhancement factors needed to see them. It turns out that an enhancement factor on the order of approximately 5 x 10(9) was sufficient for single-molecule detection of BPE, while maximum enhancement factors of approximately 5 x 10(10) were observed in extreme cases. In the case of adenine, single-molecule detection was only possible in the rare cases with enhancement factors of approximately 10(11). This study constitutes a quantitative fundamental test into the lowest detection limits (in terms of differential cross sections) for single-molecule SERS.
Nano Letters | 2011
Eric C. Le Ru; Johan Grand; Idrissa Sow; Walter R. C. Somerville; P. G. Etchegoin; Gaëlle Charron; Nordin Félidj; G. Lévi; J. Aubard
Surface-enhanced Raman spectroscopy (SERS) is now a well-established technique for the detection, under appropriate conditions, of single molecules (SM) adsorbed on metallic nanostructures. However, because of the large variations of the SERS enhancement factor on the surface, only molecules located at the positions of highest enhancement, so-called hot-spots, can be detected at the single-molecule level. As a result, in all SM-SERS studies so far only a small fraction, typically less than 1%, of molecules are actually observed. This complicates the analysis of such experiments and means that trace detection via SERS can in principle still be vastly improved. Here we propose a simple scheme, based on selective adsorption of the target analyte at the SERS hot-spots only, that allows in principle detection of every single target molecule in solution. We moreover provide a general experimental methodology, based on the comparison between average and maximum (single molecule) SERS enhancement factors, to verify the efficiency of our approach. The concepts and tools introduced in this work can readily be applied to other SERS systems aiming for detection of every single target molecule.
Analytical Chemistry | 2011
Stefan Meyer; Eric C. Le Ru; P. G. Etchegoin
The simultaneous measurement of surface plasmon resonance (SPR) spectroscopy and surface-enhanced Raman scattering (SERS) on flat metallic surfaces is demonstrated on a relatively simple experimental setup based on the Kretschmann configuration. This setup requires only minor modifications to standard Raman microscopes, and we show that it can be applied successfully to the most common conditions of SPR spectroscopy, i.e., water-based solutions on gold films. Our results emphasize the peculiar properties of the Kretschmann configuration for spectroscopy in general and SERS measurements in particular, especially in terms of the asymmetry between excitation and collection requirements. The combination of simultaneous SPR-SERS spectroscopy opens up interesting prospects in analytical science to study, for example, reaction kinetics at surfaces under conditions which are already available in commercial SPR instruments.
Journal of the American Chemical Society | 2013
Emili Cortés; P. G. Etchegoin; Eric C. Le Ru; Alejandro Fainstein; M. E. Vela; R. C. Salvarezza
Single-molecule (SM) electrochemistry studied by surface-enhanced Raman scattering (SERS) with high spectral resolution reveals a picture in which the frequency of Raman modes is correlated with the electrochemical process through the interaction with the surface. Previously unexplored phenomena can be revealed by the synergy of electrochemistry and SM-SERS, which explores in this case subtler spectroscopic aspects (like the frequency of a vibration within the inhomogeneous broadening of a many-molecules Raman peak) to gain the information. We demonstrate, among other things, that the interaction with the surface is correlated both with the molecule vibrational frequencies and with the ability of single molecules to be reduced/oxidized at different potentials along the electrochemical cycle. Qualitative models of the interaction of molecules with surfaces are also touched upon.
Journal of the American Chemical Society | 2014
Brendan L. Darby; Eric C. Le Ru
This study highlights a crucial but often overlooked consideration during sample preparation involving surface-adsorbing species: the competition between analyte adsorption and analyte diffusion/mixing strongly affects the distribution of analytes throughout the sample. In cases of fast analyte adsorption, we argue that the use of large-dilution factors, a common approach for sample preparation in surface-enhanced Raman spectroscopy (SERS), may result in an extreme nonuniformity of the surface coverage. This has a direct effect on the aggregation state of the colloidal solution and therefore on the overall SERS signal. Explicitly, we show that the average SERS signal obtained from typical dyes in colloidal solutions can be drastically different for two seemingly equivalent samples, differing only in the method by which the dye molecules were diluted. We, in addition, discuss the implications of such nonuniformity on the statistics of SERS intensities in the context of single-molecule detection. These results vividly highlight the importance of the dilution step in any experiments involving surface-adsorbing species and position SERS as an ideal tool to evidence such effects. In such cases, a simple half-half dilution procedure should be adopted as the standard method to mitigate these effects.
Analytical Chemistry | 2012
Eric C. Le Ru; Lina C. Schroeter; P. G. Etchegoin
Resonant Raman (RR) spectroscopy, despite its many promising applications in analytical chemistry and biology, remains an experimental challenge (compared to standard Raman) primarily because of the presence of large fluorescence backgrounds overwhelming the RR signals. The observation of RR spectra of fluorophores therefore requires the use of specialized, picosecond-time-resolved setups. Here, we present and demonstrate a method, based on polarization-difference, by which RR spectra and cross sections can be measured using the most standard Raman setup with continuous wave excitation and CCD-based detection. The method is applied to the dyes Nile Blue and rhodamine 6G under resonant excitation. This work should open a new era in RR spectroscopy, where RR spectra can be routinely measured and studied with conventional Raman systems.
Nature Photonics | 2016
Brendan L. Darby; Baptiste Auguié; Matthias Meyer; Andres E. Pantoja; Eric C. Le Ru
Direct measurements of silver spheres with sub-monolayer concentrations of dye-molecules reveal shifts and broadening of molecular resonances.
Journal of Physical Chemistry A | 2012
Stefan Meyer; Baptiste Auguié; Eric C. Le Ru; P. G. Etchegoin
A novel hybrid spectroscopic technique is proposed, combining surface plasmon resonance (SPR) with surface-enhanced Raman scattering (SERS) microscopy. A standard Raman microscope is modified to accommodate the excitation of surface plasmon-polaritons (SPPs) on flat metallic surfaces in the Kretschmann configuration, while retaining the capabilities of Raman microscopy. The excitation of SPPs is performed as in standard SPR-microscopy; namely, a beam with TM-polarization traverses off-axis a high numerical aperture oil immersion objective, illuminating at an angle the metallic film from the (glass) substrate side. The same objective is used to collect the full Kretschmann cone containing the SERS emission on the substrate side. The angular dispersion of the plasmon resonance is measured in reflectivity for different coupling conditions and, simultaneously, SERS spectra are recorded from Nile Blue (NB) molecules adsorbed onto the surface. A trade-off is identified between the conditions of optimum coupling to SPPs and the spot size (which is related to the spatial resolution). This technique opens new horizons for SERS microscopy with uniform enhancement on flat surfaces.
Physical Review A | 2013
Eric C. Le Ru; Walter R. C. Somerville; Baptiste Auguié
The transition-matrix (
Principles of Surface-Enhanced Raman Spectroscopy | 2009
Eric C. Le Ru; Pablo G. Etchegoin
T
Collaboration
Dive into the Eric C. Le Ru's collaboration.
MacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputs