Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Coissac is active.

Publication


Featured researches published by Eric Coissac.


Nucleic Acids Research | 2007

Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding

Pierre Taberlet; Eric Coissac; François Pompanon; Ludovic Gielly; Christian Miquel; Alice Valentini; Thierry Vermat; Gérard Corthier; Christian Brochmann; Eske Willerslev

DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254–767 bp) and of a shorter fragment of this intron (the P6 loop, 10–143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trnL intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies.DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trn L (UAA) intron (254-767 bp) and of a shorter fragment of this intron (the P6 loop, 10-143 bp) amplified with highly conserved primers. The main limitation of the whole trn L intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trn L intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies.


Molecular Ecology | 2012

Towards next-generation biodiversity assessment using DNA metabarcoding.

Pierre Taberlet; Eric Coissac; François Pompanon; Christian Brochmann

Virtually all empirical ecological studies require species identification during data collection. DNA metabarcoding refers to the automated identification of multiple species from a single bulk sample containing entire organisms or from a single environmental sample containing degraded DNA (soil, water, faeces, etc.). It can be implemented for both modern and ancient environmental samples. The availability of next‐generation sequencing platforms and the ecologists’ need for high‐throughput taxon identification have facilitated the emergence of DNA metabarcoding. The potential power of DNA metabarcoding as it is implemented today is limited mainly by its dependency on PCR and by the considerable investment needed to build comprehensive taxonomic reference libraries. Further developments associated with the impressive progress in DNA sequencing will eliminate the currently required DNA amplification step, and comprehensive taxonomic reference libraries composed of whole organellar genomes and repetitive ribosomal nuclear DNA can be built based on the well‐curated DNA extract collections maintained by standardized barcoding initiatives. The near‐term future of DNA metabarcoding has an enormous potential to boost data acquisition in biodiversity research.


Molecular Ecology | 2012

Environmental DNA: ENVIRONMENTAL DNA

Pierre Taberlet; Eric Coissac; Mehrdad Hajibabaei; Loren H. Rieseberg

PIERRE TABERLET,* ERIC COISSAC,* MEHRDAD HAJIBABAEI† and LOREN H. RIESEBERG,‡§ *Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France, †Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada, ‡Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada, §Department of Biology, Indiana University, Bloomington, IN 47405, USA


Molecular Ecology Resources | 2009

New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach

Alice Valentini; Christian Miquel; Muhammad Ali Nawaz; Eva Bellemain; Eric Coissac; François Pompanon; Ludovic Gielly; Corinne Cruaud; Giuseppe Nascetti; Patrick Wincker; Jon E. Swenson; Pierre Taberlet

The development of DNA barcoding (species identification using a standardized DNA sequence), and the availability of recent DNA sequencing techniques offer new possibilities in diet analysis. DNA fragments shorter than 100–150 bp remain in a much higher proportion in degraded DNA samples and can be recovered from faeces. As a consequence, by using universal primers that amplify a very short but informative DNA fragment, it is possible to reliably identify the plant taxon that has been eaten. According to our experience and using this identification system, about 50% of the taxa can be identified to species using the trnL approach, that is, using the P6 loop of the chloroplast trnL (UAA) intron. We demonstrated that this new method is fast, simple to implement, and very robust. It can be applied for diet analyses of a wide range of phytophagous species at large scales. We also demonstrated that our approach is efficient for mammals, birds, insects and molluscs. This method opens new perspectives in ecology, not only by allowing large‐scale studies on diet, but also by enhancing studies on resource partitioning among competing species, and describing food webs in ecosystems.


Science | 2012

Glacial Survival of Boreal Trees in Northern Scandinavia

Laura Parducci; Tina Jørgensen; Mari Mette Tollefsrud; Ellen Elverland; Torbjørn Alm; Sonia L. Fontana; Keith Bennett; James Haile; Irina Matetovici; Yoshihisa Suyama; Mary E. Edwards; Kenneth Geving Andersen; Morten Rasmussen; Sanne Boessenkool; Eric Coissac; Christian Brochmann; Pierre Taberlet; Michael Houmark-Nielsen; Nicolaj K. Larsen; Ludovic Orlando; M. Thomas P. Gilbert; Kurt H. Kjær; Inger Greve Alsos

Tree Refugia Ideas of how and when boreal plants spread to the formerly glaciated parts of the world following the retreat of the glaciers 9000 years ago are long debated. Models of the postglacial spread of boreal plants argue for dispersal from southern refugia; however, Parducci et al. (p. 1083) have shown that both spruce and pine were present in small ice-free regions of Scandinavia much earlier than thought. DNA haplotyping confirmed that a remnant mitochondrial type of spruce, once unique to Scandinavia, now lives alongside the more common spruce originating from Eastern Europe. Evidence from lake cores collected from central and northern Norway indicated the survival of conifers as early as 22,000 years before the present, when apart from ice-free pockets, most of Scandinavia was covered by ice. DNA from modern and ancient spruce and pine indicate that both survived in ice-free areas during the last glaciations. It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west—an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.


Nature | 2014

Fifty thousand years of Arctic vegetation and megafaunal diet

John Davison; Mari Moora; Martin Zobel; Eric Coissac; Mary E. Edwards; Eline D. Lorenzen; Mette Vestergård; Galina Gussarova; James Haile; Joseph M. Craine; Ludovic Gielly; Sanne Boessenkool; Laura Saskia Epp; Rachid Cheddadi; David W. Murray; Kari Anne Bråthen; Nigel G. Yoccoz; Heather Binney; Corinne Cruaud; Patrick Wincker; Tomasz Goslar; Inger Greve Alsos; Eva Bellemain; Anne K. Brysting; Reidar Elven; J. H. Sønstebø; Julian B. Murton; Andrei Sher; Morten Rasmussen; Regin Rønn

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Frontiers in Zoology | 2009

Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures

Eeva M. Soininen; Alice Valentini; Eric Coissac; Christian Miquel; Ludovic Gielly; Christian Brochmann; Anne K. Brysting; J. H. Sønstebø; Rolf A. Ims; Nigel G. Yoccoz; Pierre Taberlet

BackgroundIn order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trn L (UAA) intron.ResultsAlthough the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis.ConclusionWe conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores.


Molecular Ecology | 2016

Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.

Alice Valentini; Pierre Taberlet; Claude Miaud; Raphaël Civade; Jelger Herder; Philip Francis Thomsen; Eva Bellemain; Aurélien Besnard; Eric Coissac; Frédéric Boyer; Coline Gaboriaud; Pauline Jean; Nicolas Poulet; Nicolas Roset; Gordon H. Copp; Philippe Geniez; Didier Pont; Christine Argillier; Jean‐Marc Baudoin; Tiphaine Peroux; Alain J. Crivelli; Anthony Olivier; Manon Acqueberge; Matthieu Le Brun; Peter Möller; Tony Dejean

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.


Biology Letters | 2014

DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match

Bruce E. Deagle; Simon N. Jarman; Eric Coissac; François Pompanon; Pierre Taberlet

DNA metabarcoding enables efficient characterization of species composition in environmental DNA or bulk biodiversity samples, and this approach is making significant and unique contributions in the field of ecology. In metabarcoding of animals, the cytochrome c oxidase subunit I (COI) gene is frequently used as the marker of choice because no other genetic region can be found in taxonomically verified databases with sequences covering so many taxa. However, the accuracy of metabarcoding datasets is dependent on recovery of the targeted taxa using conserved amplification primers. We argue that COI does not contain suitably conserved regions for most amplicon-based metabarcoding applications. Marker selection deserves increased scrutiny and available marker choices should be broadened in order to maximize potential in this exciting field of research.


BMC Genomics | 2010

An In silico approach for the evaluation of DNA barcodes

Gentile Francesco Ficetola; Eric Coissac; Stéphanie Zundel; Tiayyba Riaz; Wasim Shehzad; Julien Bessière; Pierre Taberlet; François Pompanon

BackgroundDNA barcoding is a key tool for assessing biodiversity in both taxonomic and environmental studies. Essential features of barcodes include their applicability to a wide spectrum of taxa and their ability to identify even closely related species. Several DNA regions have been proposed as barcodes and the region selected strongly influences the output of a study. However, formal comparisons between barcodes remained limited until now. Here we present a standard method for evaluating barcode quality, based on the use of a new bioinformatic tool that performs in silico PCR over large databases. We illustrate this approach by comparing the taxonomic coverage and the resolution of several DNA regions already proposed for the barcoding of vertebrates. To assess the relationship between in silico and in vitro PCR, we also developed specific primers amplifying different species of Felidae, and we tested them using both kinds of PCRResultsTests on specific primers confirmed the correspondence between in silico and in vitro PCR. Nevertheless, results of in silico and in vitro PCRs can be somehow different, also because tuning PCR conditions can increase the performance of primers with limited taxonomic coverage. The in silico evaluation of DNA barcodes showed a strong variation of taxonomic coverage (i.e., universality): barcodes based on highly degenerated primers and those corresponding to the conserved region of the Cyt-b showed the highest coverage. As expected, longer barcodes had a better resolution than shorter ones, which are however more convenient for ecological studies analysing environmental samples.ConclusionsIn silico PCR could be used to improve the performance of a study, by allowing the preliminary comparison of several DNA regions in order to identify the most appropriate barcode depending on the study aims.

Collaboration


Dive into the Eric Coissac's collaboration.

Top Co-Authors

Avatar

Pierre Taberlet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Boyer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Gielly

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aurélie Bonin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Brochmann

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary E. Edwards

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Alice Valentini

Joseph Fourier University

View shared research outputs
Researchain Logo
Decentralizing Knowledge