Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric D. Brill is active.

Publication


Featured researches published by Eric D. Brill.


international acm sigir conference on research and development in information retrieval | 2006

Improving web search ranking by incorporating user behavior information

Eugene Agichtein; Eric D. Brill; Susan T. Dumais

We show that incorporating user behavior data can significantly improve ordering of top results in real web search setting. We examine alternatives for incorporating feedback into the ranking process and explore the contributions of user feedback compared to other common web search features. We report results of a large scale evaluation over 3,000 queries and 12 million user interactions with a popular web search engine. We show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithms by as much as 31% relative to the original performance.


Computer Speech & Language | 2000

Finding consensus in speech recognition : word error minimization and other applications of confusion networks

Lidia Mangu; Eric D. Brill; Andreas Stolcke

We describe a new framework for distilling information from word lattices to improve the accuracy of the speech recognition output and obtain a more perspicuous representation of a set of alternative hypotheses. In the standard MAP decoding approach the recognizer outputs the string of words corresponding to the path with the highest posterior probability given the acoustics and a language model. However, even given optimal models, the MAP decoder does not necessarily minimize the commonly used performance metric, word error rate (WER). We describe a method for explicitly minimizing WER by extracting word hypotheses with the highest posterior probabilities from word lattices. We change the standard problem formulation by replacing global search over a large set of sentence hypotheses with local search over a small set of word candidates. In addition to improving the accuracy of the recognizer, our method produces a new representation of a set of candidate hypotheses that specifies the sequence of word-level confusions in a compact lattice format. We study the properties of confusion networks and examine their use for other tasks, such as lattice compression, word spotting, confidence annotation, and reevaluation of recognition hypotheses using higher-level knowledge sources.


meeting of the association for computational linguistics | 2001

Scaling to Very Very Large Corpora for Natural Language Disambiguation

Michelle Banko; Eric D. Brill

The amount of readily available on-line text has reached hundreds of billions of words and continues to grow. Yet for most core natural language tasks, algorithms continue to be optimized, tested and compared after training on corpora consisting of only one million words or less. In this paper, we evaluate the performance of different learning methods on a prototypical natural language disambiguation task, confusion set disambiguation, when trained on orders of magnitude more labeled data than has previously been used. We are fortunate that for this particular application, correctly labeled training data is free. Since this will often not be the case, we examine methods for effectively exploiting very large corpora when labeled data comes at a cost.


meeting of the association for computational linguistics | 2000

An improved error model for noisy channel spelling correction

Eric D. Brill; Robert C. Moore

The noisy channel model has been applied to a wide range of problems, including spelling correction. These models consist of two components: a source model and a channel model. Very little research has gone into improving the channel model for spelling correction. This paper describes a new channel model for spelling correction, based on generic string to string edits. Using this model gives significant performance improvements compared to previously proposed models.


international acm sigir conference on research and development in information retrieval | 2002

Web question answering: is more always better?

Susan T. Dumais; Michele Banko; Eric D. Brill; Jimmy J. Lin; Andrew Yue Hang Ng

This paper describes a question answering system that is designed to capitalize on the tremendous amount of data that is now available online. Most question answering systems use a wide variety of linguistic resources. We focus instead on the redundancy available in large corpora as an important resource. We use this redundancy to simplify the query rewrites that we need to use, and to support answer mining from returned snippets. Our system performs quite well given the simplicity of the techniques being utilized. Experimental results show that question answering accuracy can be greatly improved by analyzing more and more matching passages. Simple passage ranking and n-gram extraction techniques work well in our system making it efficient to use with many backend retrieval engines.


empirical methods in natural language processing | 2002

An Analysis of the AskMSR Question-Answering System

Eric D. Brill; Susan T. Dumais; Michele Banko

We describe the architecture of the AskMSR question answering system and systematically evaluate contributions of different system components to accuracy. The system differs from most question answering systems in its dependency on data redundancy rather than sophisticated linguistic analyses of either questions or candidate answers. Because a wrong answer is often worse than no answer, we also explore strategies for predicting when the question answering system is likely to give an incorrect answer.


international world wide web conferences | 2006

Beyond PageRank: machine learning for static ranking

Matthew Richardson; Amit Prakash; Eric D. Brill

Since the publication of Brin and Pages paper on PageRank, many in the Web community have depended on PageRank for the static (query-independent) ordering of Web pages. We show that we can significantly outperform PageRank using features that are independent of the link structure of the Web. We gain a further boost in accuracy by using data on the frequency at which users visit Web pages. We use RankNet, a ranking machine learning algorithm, to combine these and other static features based on anchor text and domain characteristics. The resulting model achieves a static ranking pairwise accuracy of 67.3% (vs. 56.7% for PageRank or 50% for random).


international conference on human language technology research | 2001

Mitigating the paucity-of-data problem: exploring the effect of training corpus size on classifier performance for natural language processing

Michele Banko; Eric D. Brill

In this paper, we discuss experiments applying machine learning techniques to the task of confusion set disambiguation, using three orders of magnitude more training data than has previously been used for any disambiguation-in-string-context problem. In an attempt to determine when current learning methods will cease to benefit from additional training data, we analyze residual errors made by learners when issues of sparse data have been significantly mitigated. Finally, in the context of our results, we discuss possible directions for the empirical natural language research community.


international acm sigir conference on research and development in information retrieval | 2004

Learning effective ranking functions for newsgroup search

Wensi Xi; Jesper B. Lind; Eric D. Brill

Web communities are web virtual broadcasting spaces where people can freely discuss anything. While such communities function as discussion boards, they have even greater value as large repositories of archived information. In order to unlock the value of this resource, we need an effective means for searching archived discussion threads. Unfortunately the techniques that have proven successful for searching document collections and the Web are not ideally suited to the task of searching archived community discussions. In this paper, we explore the problem of creating an effective ranking function to predict the most relevant messages to queries in community search. We extract a set of predictive features from the thread trees of newsgroup messages as well as features of message authors and lexical distribution within a message thread. Our final results indicate that when using linear regression with this feature set, our search system achieved a 28.5% performance improvement compared to our baseline system.


Information Retrieval | 2006

Automatic question answering using the web: Beyond the Factoid

Radu Soricut; Eric D. Brill

In this paper we describe and evaluate a Question Answering (QA) system that goes beyond answering factoid questions. Our approach to QA assumes no restrictions on the type of questions that are handled, and no assumption that the answers to be provided are factoids. We present an unsupervised approach for collecting question and answer pairs from FAQ pages, which we use to collect a corpus of 1 million question/answer pairs from FAQ pages available on the Web. This corpus is used to train various statistical models employed by our QA system: a statistical chunker used to transform a natural language-posed question into a phrase-based query to be submitted for exact match to an off-the-shelf search engine; an answer/question translation model, used to assess the likelihood that a proposed answer is indeed an answer to the posed question; and an answer language model, used to assess the likelihood that a proposed answer is a well-formed answer. We evaluate our QA system in a modular fashion, by comparing the performance of baseline algorithms against our proposed algorithms for various modules in our QA system. The evaluation shows that our system achieves reasonable performance in terms of answer accuracy for a large variety of complex, non-factoid questions.

Collaboration


Dive into the Eric D. Brill's collaboration.

Researchain Logo
Decentralizing Knowledge