Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric D. Brown is active.

Publication


Featured researches published by Eric D. Brown.


Nature | 1999

Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori

Richard A. Alm; Lo-See L. Ling; Donald T. Moir; Benjamin L. King; Eric D. Brown; Peter Doig; Douglas R. Smith; Brian Noonan; Braydon C. Guild; Boudewijn L. deJonge; Gilles Carmel; Peter J. Tummino; Anthony Caruso; Maria Uria-Nickelsen; Debra M. Mills; Cameron Ives; Rene Gibson; David Merberg; Scott D. Mills; Qin Jiang; Diane E. Taylor; Gerald F. Vovis; Trevor J. Trust

Helicobacter pylori, one of the most common bacterial pathogens of humans, colonizes the gastric mucosa, where it appears to persist throughout the hosts life unless the patient is treated. Colonization induces chronic gastric inflammation which can progress to a variety of diseases, ranging in severity from superficial gastritis and peptic ulcer to gastric cancer and mucosal-associated lymphoma. Strain-specific genetic diversity has been proposed to be involved in the organisms ability to cause different diseases or even be beneficial to the infected host, and to participate in the lifelong chronicity of infection. Here we compare the complete genomic sequences of two unrelated H. pylori isolates. This is, to our knowledge, the first such genomic comparison. H. pylori was believed to exhibit a large degree of genomic and allelic diversity, but we find that the overall genomic organization, gene order and predicted proteomes (sets of proteins encoded by the genomes) of the two strains are quite similar. Between 6 to 7% of the genes are specific to each strain, with almost half of these genes being clustered in a single hypervariable region.


Lancet Infectious Diseases | 2013

Antibiotic resistance—the need for global solutions

Ramanan Laxminarayan; Adriano Duse; Chand Wattal; Anita K. M. Zaidi; Heiman Wertheim; Nithima Sumpradit; Erika Vlieghe; Gabriel Levy Hara; Ian M. Gould; Herman Goossens; Christina Greko; Anthony D. So; Maryam Bigdeli; Goeran Tomson; Will Woodhouse; Eva Ombaka; Arturo Quizhpe Peralta; Farah Naz Qamar; Fatima Mir; Sam Kariuki; Zulfigar A. Bhutta; Anthony R. M. Coates; Richard Bergstrom; Gerard D. Wright; Eric D. Brown; Otto Cars

The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.


Nature | 2016

Antibacterial drug discovery in the resistance era

Eric D. Brown; Gerard D. Wright

The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.


Cell | 2012

Identification of Drugs Including a Dopamine Receptor Antagonist that Selectively Target Cancer Stem Cells

Eleftherios Sachlos; Ruth M. Risueño; Sarah Laronde; Zoya Shapovalova; Jong-Hee Lee; Jennifer Russell; Monika Malig; Jamie McNicol; Aline Fiebig-Comyn; Monica Graham; Marilyne Levadoux-Martin; Jung Bok Lee; Andrew O. Giacomelli; John A. Hassell; Daniela Fischer-Russell; Michael R. Trus; Ronan Foley; Brian Leber; Anargyros Xenocostas; Eric D. Brown; Tony J. Collins; Mickie Bhatia

Selective targeting of cancer stem cells (CSCs) offers promise for a new generation of therapeutics. However, assays for both human CSCs and normal stem cells that are amenable to robust biological screens are limited. Using a discovery platform that reveals differences between neoplastic and normal human pluripotent stem cells (hPSC), we identify small molecules from libraries of known compounds that induce differentiation to overcome neoplastic self-renewal. Surprisingly, thioridazine, an antipsychotic drug, selectively targets the neoplastic cells, and impairs human somatic CSCs capable of in vivo leukemic disease initiation while having no effect on normal blood SCs. The drug antagonizes dopamine receptors that are expressed on CSCs and on breast cancer cells as well. These results suggest that dopamine receptors may serve as a biomarker for diverse malignancies, demonstrate the utility of using neoplastic hPSCs for identifying CSC-targeting drugs, and provide support for the use of differentiation as a therapeutic strategy.


Nature Chemical Biology | 2011

Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy

Linda Ejim; Maya A. Farha; Shannon B. Falconer; Jan Wildenhain; Brian K. Coombes; Mike Tyers; Eric D. Brown; Gerard D. Wright

Combinations of antibiotics are commonly used in medicine to broaden antimicrobial spectrum and generate synergistic effects. Alternatively, combination of nonantibiotic drugs with antibiotics offers an opportunity to sample a previously untapped expanse of bioactive chemical space. We screened a collection of drugs to identify compounds that augment the activity of the antibiotic minocycline. Unexpected synergistic drug combinations exhibited in vitro and in vivo activity against bacterial pathogens, including multidrug-resistant isolates.


Journal of Bacteriology | 2006

Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway

Michael A. D'Elia; Mark P. Pereira; Yu Seon Chung; Wenjun Zhao; Andrew S. Chau; Teresa J. Kenney; Mark C. Sulavik; Todd A. Black; Eric D. Brown

An extensive study of teichoic acid biosynthesis in the model organism Bacillus subtilis has established teichoic acid polymers as essential components of the gram-positive cell wall. However, similar studies pertaining to therapeutically relevant organisms, such as Staphylococcus aureus, are scarce. In this study we have carried out a meticulous examination of the dispensability of teichoic acid biosynthetic enzymes in S. aureus. By use of an allelic replacement methodology, we examined all facets of teichoic acid assembly, including intracellular polymer production and export. Using this approach we confirmed that the first-acting enzyme (TarO) was dispensable for growth, in contrast to dispensability studies in B. subtilis. Upon further characterization, we demonstrated that later-acting gene products (TarB, TarD, TarF, TarIJ, and TarH) responsible for polymer formation and export were essential for viability. We resolved this paradox by demonstrating that all of the apparently indispensable genes became dispensable in a tarO null genetic background. This work suggests a lethal gain-of-function mechanism where lesions beyond the initial step in wall teichoic acid biosynthesis render S. aureus nonviable. This discovery poses questions regarding the conventional understanding of essential gene sets, garnered through single-gene knockout experiments in bacteria and higher organisms, and points to a novel drug development strategy targeting late steps in teichoic acid synthesis for the infectious pathogen S. aureus.


Nature Biotechnology | 2010

An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase

Stephen Orlicky; Xiaojing Tang; Victor Neduva; Nadine H. Elowe; Eric D. Brown; Frank Sicheri; Mike Tyers

The specificity of SCF ubiquitin ligase–mediated protein degradation is determined by F-box proteins. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCFCdc4. A co-crystal structure reveals that SCF-I2 inserts itself between the β-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 Å away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.


Applied and Environmental Microbiology | 2001

Development and Characterization of a Xylose-Dependent System for Expression of Cloned Genes in Bacillus subtilis: Conditional Complementation of a Teichoic Acid Mutant

Amit P. Bhavsar; Xumei Zhao; Eric D. Brown

ABSTRACT We have developed a xylose-dependent expression system for tight and modulated expression of cloned genes in Bacillus subtilis. The expression system is contained on plasmid pSWEET for integration at the amyE locus of B. subtilis and incorporates components of the well-characterized, divergently transcribed xylose utilization operon. The system contains the xylose repressor encoded by xylR, the promoter and 5′ portion of xylA containing an optimized catabolite-responsive element, and intergenic xyl operator sequences. We have rigorously compared this expression system to the isopropyl-β-d-thiogalactopyranoside-inducedspac system using a thermostable β-galactosidase reporter (BgaB) and found the xyl promoter-operator to have a greater capacity for modulated expression, a higher induction/repression ratio (279-fold for the xyl system versus 24-fold with the spac promoter), and lower levels of expression in the absence of an inducer. We have used this system to probe an essential function in wall teichoic acid biosynthesis inB. subtilis. Expression of the teichoic acid biosynthesis gene tagD, encoding glycerol-3-phosphate cytidylyltransferase, from the xylose-based expression system integrated at amyE exhibited xylose-dependent complementation of the temperature-sensitive mutant tag-12when grown at the nonpermissive temperature. Plasmid pSWEET thus provides a robust new expression system for conditional complementation in B. subtilis.


Molecular Systems Biology | 2014

Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole

Michaela Spitzer; Emma J. Griffiths; Kim M. Blakely; Jan Wildenhain; Linda Ejim; Laura Rossi; Gianfranco De Pascale; Jasna Curak; Eric D. Brown; Mike Tyers; Gerard D. Wright

Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off‐patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species‐ or genus‐specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole‐resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.


Chemistry & Biology | 2004

High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase.

Jan E. Blanchard; Nadine H. Elowe; Carly Huitema; Pascal D. Fortin; Jonathan D. Cechetto; Lindsay D. Eltis; Eric D. Brown

Abstract The causative agent of severe acute respiratory syndrome (SARS) has been identified as a novel coronavirus, SARS-CoV. The main proteinase of SARS-CoV, 3CLpro, is an attractive target for therapeutics against SARS owing to its fundamental role in viral replication. We sought to identify novel inhibitors of 3CLpro to advance the development of appropriate therapies in the treatment of SARS. 3CLpro was cloned, expressed, and purified from the Tor2 isolate. A quenched fluorescence resonance energy transfer assay was developed for 3CLpro to screen the proteinase against 50,000 drug-like small molecules on a fully automated system. The primary screen identified 572 hits; through a series of virtual and experimental filters, this number was reduced to five novel small molecules that show potent inhibitory activity (IC50 = 0.5–7 μM) toward SARS-CoV 3CLpro.

Collaboration


Dive into the Eric D. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit P. Bhavsar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge