Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric D. Bruder is active.

Publication


Featured researches published by Eric D. Bruder.


Endocrine | 1999

The effect of hypoxia on plasma leptin and insulin in newborn and juvenile rats.

Hershel Raff; Eric D. Bruder; Barbara M. Jankowski

Hypoxia leads to a decrease in food intake and attenuated weight gain in rats. The purpose of this study was to measure plasma leptin and insulin in young rats exposed to hypoxia for 7 d as compared to a normoxic control group of the same age. One group was exposed from birth to 7 d of age; the other was exposed from 28 to 35 d of age (weaned at 21 d of age). As expected, body weight was significantly lower in rats of either age exposed to hypoxia for 7 d. Plasma leptin was significantly lower in hypoxic (2.0±0.2 ng/mL; n=41) compared with normoxic (2.6±0.3 ng/mL; n=30) 7-d-old rats. Plasma leptin was also significantly lower in hypoxic (1.1±0.1 ng/mL; n=20) as compared to normoxic (1.5±0.1 ng/mL; n=20) 35-d-old rats. Seven-day-old rats exposed to hypoxia demonstrated significant increases in plasma glucose and insulin whereas 35-d-old rats exhibited a decrease inboth variables. We conclude that exposure to hypoxia for 7 d leads to a decrease in body weight and plasma leptin in infant and juvenile rats. The decrease in leptin may be an attempt to reverse hypoxia-induced anorexia.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat

Eric D. Bruder; Jennifer K Taylor; Kimberli J. Kamer; Hershel Raff

Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O(2) for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O(2) for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response ( approximately 3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O(2) saturation (SPo(2)) to approximately 80% and also decreased body temperature by 5-6 degrees C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8).


Endocrine Research | 2002

OXIDIZED PRODUCTS OF LINOLEIC ACID STIMULATE ADRENAL STEROIDOGENESIS

Theodore L. Goodfriend; Dennis L. Ball; Hershel Raff; Eric D. Bruder; H. W. Gardner; G. Spiteller

Adrenal steroidogenesis is under complex control, and clinical observations suggest that not all regulators have been identified. We postulated that fatty acid oxidation products found in the diet or formed in the body could affect steroidogenesis. Linoleic acid is a prominent constituent of animal fat and is readily oxidized. We found that several products of linoleic acid oxidation affect production of aldosterone and corticosterone by isolated cells from rat adrenals. We characterized one linoleic acid derivative by gas chromatography/mass spectrometry. It is 12,13-epoxy-9-oxo-10(trans)-octadecenoic acid (“EKODE”). At concentrations between 1 and 30 µM, EKODE stimulated production of aldosterone by zona glomerulosa cells, but at concentrations above 50 µM, it was inhibitory. In zona fasciculata cells, EKODE stimulated corticosterone production at concentrations of 5 µM or greater, and there was no evidence of inhibition at high concentrations. Stimulation of steroidogenesis was observed after 15 min of incubation and continued for at least 2 hrs. The potential relevance of our findings to the hypertension of obesity is discussed.


Endocrine | 2006

Adiponectin and Resistin in the Neonatal Rat: Effects of Dexamethasone and Hypoxia

Hershel Raff; Eric D. Bruder

Hypoxia is a common neonatal stress that induces insulin resistance and a decrease in body weight gain. Dexamethasone is often used to treat neonatal cardiopulmonary disease, and also leads to insulin resistance and a decrease in body weight gain. The current study addressed the hypothesis that serum concentrations of the adipokines adiponectin and/or resistin are altered during hypoxia and/or dexamethasone therapy in neonatal rats. Rat pups with their lactating dams were exposed to hypoxia (11% O2) from birth and treated with a tapering regimen of dexamethasone from postnatal day (PD) 3–6. Serum adiponectin and resistin were measured on PD7. Hypoxia and dexamethasone independently decreased body weight gain and increased adiponectin levels. The combination of hypoxia and dexamethasone did not further increase adiponectin. Dexamethasone caused a small increase in resistin in normoxic pups, which may facilitate the hyperinsulemic-normoglycemic state we previously described. We also conclude that adiponectin is increased during hypoxia in response to a decrease in the sensitivity to insulin.


Endocrinology | 2011

Effect of Animal Facility Construction on Basal Hypothalamic-Pituitary-Adrenal and Renin-Aldosterone Activity in the Rat

Hershel Raff; Eric D. Bruder; William E. Cullinan; Dana R. Ziegler; Eric P. Cohen

Although loud noise and intense vibration are known to alter the behavior and phenotype of laboratory animals, little is known about the effects of nearby construction. We studied the effect of a nearby construction project on the classic stress hormones ACTH, corticosterone, renin, and aldosterone in rats residing in a barrier animal facility before, for the first 3 months of a construction project, and at 1 month after all construction was completed. During some of the construction, noise and vibrations were not obvious to investigators inside the animal rooms. Body weight matched for age was not altered by nearby construction. During nearby construction, plasma ACTH, corticosterone, and aldosterone were approximately doubled compared with those of pre- and postconstruction levels. Expression of CRH mRNA in the paraventricular nucleus of the hypothalamus, CRH receptor and POMC mRNA in the anterior pituitary, and most mRNAs for steroidogenic genes in the adrenal gland were not significantly changed during construction. We conclude that nearby construction can cause a stress response without long-term effects on hypothalamic-pituitary-adrenal axis gene expression and body weight.


Lipids in Health and Disease | 2010

Cardiac and plasma lipid profiles in response to acute hypoxia in neonatal and young adult rats

Eric D. Bruder; Hershel Raff

BackgroundThe physiological and biochemical responses to acute hypoxia have not been fully characterized in neonates. Fatty acids and lipids play an important role in most aspects of cardiac function.MethodsWe performed comprehensive lipid profiling analysis to survey the changes that occur in heart tissue and plasma of neonatal and young adult rats exposed to hypoxia for 2 h, and following 2 h of recovery from hypoxia.ResultsCardiac and plasma concentrations of short-chain acylcarnitines, and most plasma long-chain fatty acids, were decreased in hypoxic neonates. Following recovery from hypoxia, concentrations of propionylcarnitine, palmitoylcarnitine, stearoylcarnitine were increased in neonatal hearts, while oleylcarnitine and linoleylcarnitine concentrations were increased in neonatal plasma. The concentrations of long-chain fatty acids and long-chain acylcarnitines were increased in the hearts and plasma of hypoxic young adult rats; these metabolites returned to baseline values following recovery from hypoxia.ConclusionThere are differential effects of acute hypoxia on cardiac and plasma lipid profiles with maturation from the neonate to the young adult rat. Changes to neonatal cardiac and plasma lipid profiles during hypoxia likely allowed for greater metabolic and physiologic flexibility and increased chances for survival. Persistent alterations in the neonatal cardiac lipid profile following recovery from hypoxia may play a role in the development of rhythm disturbances.


Endocrinology | 2014

Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific.

Kathan Chintamaneni; Eric D. Bruder; Hershel Raff

Intermittent hypoxia (IH) is an animal model of apnea-induced hypoxia, a common stressor in the premature neonate. Neonatal stressors may have long-term programming effects in the adult. We hypothesized that neonatal exposure to IH leads to significant changes in basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis function in the adult male rat. Rat pups were exposed to normoxia (control) or 6 approximately 30-second cycles of IH (5% or 10% inspired O₂) daily on postnatal days 2-6. At approximately 100 days of age, we assessed the diurnal rhythm of plasma corticosterone and stress-induced plasma ACTH and corticosterone responses, as well as mRNA expression of pertinent genes within the HPA axis. Basal diurnal rhythm of plasma corticosterone concentrations in the adult rat were not affected by prior exposure to neonatal IH. Adults exposed to 10% IH as neonates exhibited an augmented peak ACTH response and a prolonged corticosterone response to restraint stress; however, HPA axis responses to insulin-induced hypoglycemia were not augmented in adults exposed to neonatal IH. Pituitary Pomc, Crhr1, Nr3c1, Nr3c2, Avpr1b, and Hif1a mRNA expression was decreased in adults exposed to neonatal 10% IH. Expression of pertinent hypothalamic and adrenal mRNAs was not affected by neonatal IH. We conclude that exposure to neonatal 10% IH programs the adult HPA axis to hyperrespond to acute stimuli in a stressor-specific manner.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Effects of age on ACTH, corticosterone, glucose, insulin, and mRNA levels during intermittent hypoxia in the neonatal rat

Kathan Chintamaneni; Eric D. Bruder; Hershel Raff

Apnea, the temporary cessation of respiratory airflow, is a common cause of intermittent hypoxia (IH) in premature infants. We hypothesized that IH elicits a stress response and alters glucose homeostasis in the neonatal rat. Rat pups were studied on postnatal day (PD) 2, 8, 10, 12, and 14. Pups were exposed to normoxia (control) or six cycles consisting of 30-s exposures to hypoxia (FiO2 = 3%) over a 60-min period. Blood samples were obtained at baseline, after the third cycle (~30 min), and after the sixth cycle (~60 min). Tissue samples were collected following the sixth cycle. Plasma ACTH, corticosterone, glucose, and insulin were analyzed at all ages. Hypothalamic, pituitary, and adrenal mRNA expression was evaluated by quantitative PCR in PD2, PD8, and PD12 pups. Exposure to IH elicited significant increases in plasma ACTH and corticosterone at all ages studied. The largest increase in corticosterone occurred in PD2 pups, despite only a very small increase in plasma ACTH. This ACTH-independent increase in corticosterone in PD2 pups was associated with increases in adrenal Ldlr and Star mRNA expression. Additionally, IH caused hyperglycemia and hyperinsulinemia at all ages. We conclude that IH elicits a significant pituitary-adrenal response and significantly alters glucose homeostasis. Furthermore, the quantitative and qualitative characteristics of these responses depend on developmental age.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Effects of body temperature maintenance on glucose, insulin, and corticosterone responses to acute hypoxia in the neonatal rat

Mitchell A Guenther; Eric D. Bruder; Hershel Raff

One of the biggest challenges of premature birth is acute hypoxia. Hypothermia during acute hypoxic periods may be beneficial. We hypothesized that prevention of hypothermia during neonatal hypoxia disrupts glucose homeostasis and places additional metabolic challenges on the neonate. Pups at PD2 and PD8 were exposed to 8% O2 for 3 h, during which they were allowed to either spontaneously cool or were kept isothermic. There was also a time control group that was subjected to normoxia and kept isothermic. Plasma glucose, insulin, C-peptide, corticosterone, and catecholamines were measured from samples collected at baseline, 1 h, 2 h, and 3 h. In postnatal day 2 (PD2) rats, hypoxia alone resulted in no change in plasma glucose by 1 h, an increase by 2 h, and a subsequent decrease below baseline values by 3 h. Hypoxia with isothermia in PD2 rats elicited a large increase in plasma insulin at 1 h. In PD8 rats, hypoxia with isothermia resulted in an initial increase in plasma glucose, but by 3 h, glucose had decreased significantly to below baseline levels. Hypoxia with and without isothermia elicited an increase in plasma corticosterone at both ages and an increase in plasma epinephrine in PD8 rats. We conclude that the insulin response to hypoxia in PD8 rats is associated with an increase in glucose similar to an adult; however, insulin responses to hypoxia in PD2 rats were driven by something other than glucose. Prevention of hypothermia during hypoxia further disrupts glucose homeostasis and increases metabolic challenges.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Adrenocorticotropic hormone and corticosterone responses to acute hypoxia in the neonatal rat: effects of body temperature maintenance

Eric D. Bruder; Kimberli J. Kamer; Mitchell A Guenther; Hershel Raff

The corticosterone response to acute hypoxia in neonatal rats develops in the 1st wk of life, with a shift from ACTH independence to ACTH dependence. Acute hypoxia also leads to hypothermia, which may be protective. There is little information about the endocrine effects of body temperature maintenance during periods of neonatal hypoxia. We hypothesized that prevention of hypothermia during neonatal hypoxia would augment the adrenocortical stress response. Rat pups separated from their dams were studied at postnatal days 2 and 8 (PD2 and PD8). In one group of pups, body temperature was allowed to spontaneously decrease during a 30-min prehypoxia period. Pups were then exposed to 8% O(2) for 3 h and allowed to become spontaneously hypothermic or externally warmed (via servo-controlled heat) to maintain isothermia. In another group, external warming was used to maintain isothermia during the prehypoxia period, and then hypoxia with or without isothermia was applied. Plasma ACTH and corticosterone and mRNA expression of genes for upstream proteins involved in the steroidogenic pathway were measured. Maintenance of isothermia during the prehypoxia period increased baseline plasma ACTH at both ages. Hypothermic hypoxia caused an increase in plasma corticosterone; this response was augmented by isothermia at PD2, when the response was ACTH-independent, and at PD8, when the response was ACTH-dependent. In PD8 rats, isothermia also augmented the plasma ACTH response to hypoxia. We conclude that maintenance of isothermia augments the adrenocortical response to acute hypoxia in the neonate. Prevention of hypothermia may increase the stress response during neonatal hypoxia, becoming more pronounced with increased age.

Collaboration


Dive into the Eric D. Bruder's collaboration.

Top Co-Authors

Avatar

Hershel Raff

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Barbara M. Jankowski

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Ping C. Lee

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Theodore L. Goodfriend

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Martin K. Oaks

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Ball

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric P. Cohen

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge