Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric D. Marsh is active.

Publication


Featured researches published by Eric D. Marsh.


Brain | 2009

Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females

Eric D. Marsh; Carl T. Fulp; Ernest D. Gomez; Ilya M. Nasrallah; Jeremy Minarcik; Jyotsna Sudi; Susan L. Christian; Grazia M.S. Mancini; Patricia A. Labosky; William B. Dobyns; Amy R. Brooks-Kayal; Jeffrey A. Golden

Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed Arx allele were generated and crossed to Dlx5/6(CRE-IRES-GFP)(Dlx5/6(CIG)) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx(-/y);Dlx5/6(CIG) (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele (Arx(-/+);Dlx5/6(CIG)) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders.


Clinical Neurophysiology | 2007

Human and Automated Detection of High-Frequency Oscillations in Clinical Intracranial EEG Recordings

Andrew B. Gardner; Greg Worrell; Eric D. Marsh; Dennis J. Dlugos; Brian Litt

OBJECTIVE Recent studies indicate that pathologic high-frequency oscillations (HFOs) are signatures of epileptogenic brain. Automated tools are required to characterize these events. We present a new algorithm tuned to detect HFOs from 30 to 85 Hz, and validate it against human expert electroencephalographers. METHODS We randomly selected 28 3-min single-channel epochs of intracranial EEG (IEEG) from two patients. Three human reviewers and three automated detectors marked all records to identify candidate HFOs. Subsequently, human reviewers verified all markings. RESULTS A total of 1330 events were collectively identified. The new method presented here achieved 89.7% accuracy against a consensus set of human expert markings. A one-way ANOVA determined no difference between the mean F-measures of the human reviewers and automated algorithm. Human kappa statistics (mean kappa=0.38) demonstrated marginal identification consistency, primarily due to false negative errors. CONCLUSIONS We present an HFO detector that improves upon existing algorithms, and performs as well as human experts on our test data set. Validation of detector performance must be compared to more than one expert because of interrater variability. SIGNIFICANCE This algorithm will be useful for analyzing large EEG databases to determine the pathophysiological significance of HFO events in human epileptic networks.


The New England Journal of Medicine | 2017

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Orrin Devinsky; J. Helen Cross; Linda Laux; Eric D. Marsh; Ian Miller; Rima Nabbout; Ingrid E. Scheffer; Elizabeth A. Thiele; Stephen Wright

BACKGROUND The Dravet syndrome is a complex childhood epilepsy disorder that is associated with drug‐resistant seizures and a high mortality rate. We studied cannabidiol for the treatment of drug‐resistant seizures in the Dravet syndrome. METHODS In this double‐blind, placebo‐controlled trial, we randomly assigned 120 children and young adults with the Dravet syndrome and drug‐resistant seizures to receive either cannabidiol oral solution at a dose of 20 mg per kilogram of body weight per day or placebo, in addition to standard antiepileptic treatment. The primary end point was the change in convulsive‐seizure frequency over a 14‐week treatment period, as compared with a 4‐week baseline period. RESULTS The median frequency of convulsive seizures per month decreased from 12.4 to 5.9 with cannabidiol, as compared with a decrease from 14.9 to 14.1 with placebo (adjusted median difference between the cannabidiol group and the placebo group in change in seizure frequency, ‐22.8 percentage points; 95% confidence interval [CI], ‐41.1 to ‐5.4; P=0.01). The percentage of patients who had at least a 50% reduction in convulsive‐seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 95% CI, 0.93 to 4.30; P=0.08). The patients overall condition improved by at least one category on the seven‐category Caregiver Global Impression of Change scale in 62% of the cannabidiol group as compared with 34% of the placebo group (P=0.02). The frequency of total seizures of all types was significantly reduced with cannabidiol (P=0.03), but there was no significant reduction in nonconvulsive seizures. The percentage of patients who became seizure‐free was 5% with cannabidiol and 0% with placebo (P=0.08). Adverse events that occurred more frequently in the cannabidiol group than in the placebo group included diarrhea, vomiting, fatigue, pyrexia, somnolence, and abnormal results on liver‐function tests. There were more withdrawals from the trial in the cannabidiol group. CONCLUSIONS Among patients with the Dravet syndrome, cannabidiol resulted in a greater reduction in convulsive‐seizure frequency than placebo and was associated with higher rates of adverse events. (Funded by GW Pharmaceuticals; ClinicalTrials.gov number, NCT02091375.)


Human Molecular Genetics | 2008

Identification of Arx transcriptional targets in the developing basal forebrain

Carl T. Fulp; Ginam Cho; Eric D. Marsh; Ilya M. Nasrallah; Patricia A. Labosky; Jeffrey A. Golden

Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.


Annals of clinical and translational neurology | 2014

GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine.

Tyler Mark Pierson; Hongjie Yuan; Eric D. Marsh; Karin Fuentes-Fajardo; David Adams; Thomas C. Markello; Gretchen Golas; Dimitre R. Simeonov; Conisha Holloman; Anel Tankovic; Manish M. Karamchandani; John M. Schreiber; James C. Mullikin; Cynthia J. Tifft; Camilo Toro; Cornelius F. Boerkoel; Stephen F. Traynelis; William A Gahl

Early‐onset epileptic encephalopathies have been associated with de novo mutations of numerous ion channel genes. We employed techniques of modern translational medicine to identify a disease‐causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband.


Brain | 2011

Data mining neocortical high-frequency oscillations in epilepsy and controls.

Justin A. Blanco; Matt Stead; Abba M. Krieger; William C. Stacey; Douglas Maus; Eric D. Marsh; Jonathan Viventi; Kendall H. Lee; Richard W. Marsh; Brian Litt; Gregory A. Worrell

Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice

I-Ting Judy Wang; Megan Allen; Darren Goffin; Xinjian Zhu; Andrew H. Fairless; Edward S. Brodkin; Steve J. Siegel; Eric D. Marsh; Julie A. Blendy; Zhaolan Zhou

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.


European Journal of Human Genetics | 2011

Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function

Alex R. Paciorkowski; Liu Lin Thio; Jill A. Rosenfeld; Marzena Gajecka; Christina A. Gurnett; Shashikant Kulkarni; Wendy K. Chung; Eric D. Marsh; Mattia Gentile; James Reggin; James W. Wheless; Sandhya Balasubramanian; Ravinesh A. Kumar; Susan L. Christian; Carla Marini; Renzo Guerrini; Natalia Maltsev; Lisa G. Shaffer; William B. Dobyns

Infantile spasms (ISS) are an epilepsy disorder frequently associated with severe developmental outcome and have diverse genetic etiologies. We ascertained 11 subjects with ISS and novel copy number variants (CNVs) and combined these with a new cohort with deletion 1p36 and ISS, and additional published patients with ISS and other chromosomal abnormalities. Using bioinformatics tools, we analyzed the gene content of these CNVs for enrichment in pathways of pathogenesis. Several important findings emerged. First, the gene content was enriched for the gene regulatory network involved in ventral forebrain development. Second, genes in pathways of synaptic function were overrepresented, significantly those involved in synaptic vesicle transport. Evidence also suggested roles for GABAergic synapses and the postsynaptic density. Third, we confirm the association of ISS with duplication of 14q12 and maternally inherited duplication of 15q11q13, and report the association with duplication of 21q21. We also present a patient with ISS and deletion 7q11.3 not involving MAGI2. Finally, we provide evidence that ISS in deletion 1p36 may be associated with deletion of KLHL17 and expand the epilepsy phenotype in that syndrome to include early infantile epileptic encephalopathy. Several of the identified pathways share functional links, and abnormalities of forebrain synaptic growth and function may form a common biologic mechanism underlying both ISS and autism. This study demonstrates a novel approach to the study of gene content in subjects with ISS and copy number variation, and contributes further evidence to support specific pathways of pathogenesis.


Epilepsia | 2006

Seizures and Antiepileptic Drugs: Does Exposure Alter Normal Brain Development?

Eric D. Marsh; Amy R. Brooks-Kayal; Brenda E. Porter

Summary:  Seizures and antiepileptic drugs (AEDs) affect brain development and have long‐term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long‐term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long‐term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.


Journal of Neuropathology and Experimental Neurology | 2012

Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4.

Mary Reid; Kaitlin A. Murray; Eric D. Marsh; Jeffrey A. Golden; Rebecca A. Simmons; Judith B. Grinspan

Abstract Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood. We used a rat model of IUGR created by bilateral ligation of the uterine artery at embryonic Day 19 that results in fetal growth retardation and oxidative stress in the developing brain. The IUGR rat pups showed significant delays in oligodendrocyte differentiation and myelination that resolved by 8 weeks. Bone morphogenetic protein 4 (BMP4), which inhibits oligodendrocyte maturation, was elevated in IUGR brains at postnatal time points and returned to near normal by adulthood. Despite the apparent recovery, behavioral deficiencies were found in 8-week-old female animals, suggesting that the early transient myelination defects have permanent effects. In support of these in vivo data, oligodendrocyte precursor cells cultured from postnatal IUGR rats retained increased BMP4 expression and impaired differentiation that was reversed with the BMP inhibitor noggin. Oxidants in oligodendrocyte cultures increased BMP expression, which decreased differentiation; however, abrogating BMP signaling with noggin in vitro and in BMP-deficient mice prevented these effects. Together, these findings suggest that IUGR results in delayed myelination through the generation of oxidative stress that leads to BMP4 upregulation.

Collaboration


Dive into the Eric D. Marsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Litt

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dennis J. Dlugos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ingo Helbig

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Alex R. Paciorkowski

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel B. Tomlinson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Amy R. Brooks-Kayal

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge