Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric D. Merkley is active.

Publication


Featured researches published by Eric D. Merkley.


Structure | 2010

Dynameomics: A Comprehensive Database of Protein Dynamics

Marc W. van der Kamp; R. Dustin Schaeffer; Amanda L. Jonsson; Alexander D. Scouras; Andrew M. Simms; Rudesh D. Toofanny; Noah C. Benson; Peter C. Anderson; Eric D. Merkley; Steven Rysavy; Dennis Bromley; David A. C. Beck; Valerie Daggett

The dynamic behavior of proteins is important for an understanding of their function and folding. We have performed molecular dynamics simulations of the native state and unfolding pathways of over 2000 protein/peptide systems (approximately 11,000 independent simulations) representing the majority of folds in globular proteins. These data are stored and organized using an innovative database approach, which can be mined to obtain both general and specific information about the dynamics and folding/unfolding of proteins, relevant subsets thereof, and individual proteins. Here we describe the project in general terms and the type of information contained in the database. Then we provide examples of mining the database for information relevant to protein folding, structure building, the effect of single-nucleotide polymorphisms, and drug design. The native state simulation data and corresponding analyses for the 100 most populated metafolds, together with related resources, are publicly accessible through http://www.dynameomics.org.


Frontiers in Microbiology | 2012

Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1

Juan Liu; Zheming Wang; Sara M. Belchik; Marcus J. Edwards; Chongxuan Liu; David W. Kennedy; Eric D. Merkley; Mary S. Lipton; Julea N. Butt; David J. Richardson; John M. Zachara; James K. Fredrickson; Kevin M. Rosso; Liang Shi

The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO3 or FeS at oxic–anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1’s ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for candidate genes for microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encoding homologs of Shewanella oneidensis MR-1 (MR-1) MtrA, MtrB, and CymA that are involved in extracellular Fe(III) reduction. Homologs of MtrA and MtrB were also previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1. To distinguish them from those found in MR-1, the identified homologs were named MtoAB and CymAES-1. Cloned mtoA partially complemented an MR-1 mutant without MtrA with regards to ferrihydrite reduction. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA oxidized Fe(II) from pH 7 to pH 9 with the optimal rate at pH 9. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl2 >  Fe(II)–citrate > Fe(II)–NTA > Fe(II)–EDTA with the second-order rate constants ranging from 6.3 × 10−3 μM−1 s−1 for oxidation of Fe(II)Cl2 to 1.0 × 10−3 μM−1 s−1 for oxidation of Fe(II)–EDTA. Thermodynamic modeling showed that redox reaction rates for the different Fe(II)-complexes correlated with their respective estimated reaction-free energies. Collectively, these results demonstrate that MtoA is a functional Fe(II)-oxidizing protein that, by working in concert with MtoB and CymAES-1, may oxidize Fe(II) at the bacterial surface and transfer released electrons across the bacterial cell envelope to the quinone pool in the inner membrane during extracellular Fe(II) oxidation by ES-1.


Protein Science | 2014

Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine–lysine distances

Eric D. Merkley; Steven Rysavy; Abdullah Kahraman; Ryan P. Hafen; Valerie Daggett; Joshua N. Adkins

Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL‐MS), in which protein complexes are crosslinked and characterized using liquid chromatography‐mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine‐reactive N‐hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL‐MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high‐quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS3, a distance constraint of 26–30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL‐MS results to structures or in modeling. We also discuss the comparison of XL‐MS results to MD simulations and known structures as a means to test and validate experimental XL‐MS methods.


Mass Spectrometry Reviews | 2014

The succinated proteome.

Eric D. Merkley; Thomas O. Metz; Richard D. Smith; John W. Baynes; Norma Frizzell

The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in 3T3 adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes in mice. Increased succination of proteins is also detected in the kidney of a fumarase deficient conditional knock-out mouse which develops renal cysts. A wide range of proteins are subject to succination, including enzymes, adipokines, cytoskeletal proteins, and ER chaperones with functional cysteine residues. There is also some overlap between succinated and glutathionylated proteins, suggesting that the same low pKa thiols are targeted by both. Succination of adipocyte proteins in diabetes increases as a result of nutrient excess derived mitochondrial stress and this is inhibited by uncouplers, which discharge the mitochondrial membrane potential (ΔΨm) and relieve the electron transport chain. 2SC therefore serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes, and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic PTM of proteins by proteomics approaches.


ACS Chemical Biology | 2014

Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium

Natalie C. Sadler; Matthew R. Melnicki; Margrethe H. Serres; Eric D. Merkley; William B. Chrisler; Eric A. Hill; Margaret F. Romine; Sangtae Kim; Erika M. Zink; Suchitra Datta; Richard D. Smith; Alexander S. Beliaev; Allan Konopka; Aaron T. Wright

Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling and imaging of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ∼5-10-fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 s after nutrient perturbation and oscillations in reduction and oxidation for 60 min following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins and validates those previously identified in vitro.


PLOS Genetics | 2014

Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

Gerda Saxer; Michael Krepps; Eric D. Merkley; Charles Ansong; Brooke L. Deatherage Kaiser; Marie-Thérèse Valovska; Nikola Ristic; Ping T. Yeh; Vittal P. Prakash; Owen P. Leiser; Luay Nakhleh; Henry S. Gibbons; Helen W. Kreuzer; Yousif Shamoo

Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.


Journal of the American Society for Mass Spectrometry | 2013

Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking

Eric D. Merkley; Erin S. Baker; Kevin L. Crowell; Daniel J. Orton; Thomas Taverner; Charles Ansong; Yehia M. Ibrahim; Meagan C. Burnet; John R. Cort; Gordon A. Anderson; Richard D. Smith; Joshua N. Adkins

AbstractChemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides provides powerful insight into the quaternary structure of protein complexes. Mixed-isotope cross-linking (a method for distinguishing intermolecular cross-links) was coupled with liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) to provide an additional separation dimension to the traditional cross-linking approach. This method produced multiplet m/z peaks that are aligned in the IMS drift time dimension and serve as signatures of intermolecular cross-linked peptides. We developed an informatics tool to use the amino acid sequence information inherent in the multiplet spacing for accurate identification of the cross-linked peptides. Because of the separation of cross-linked and non-cross-linked peptides in drift time, our LC-IMS-MS approach was able to confidently detect more intermolecular cross-linked peptides than LC-MS alone.


Journal of Structural and Functional Genomics | 2013

Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze

Eric D. Merkley; John R. Cort; Joshua N. Adkins

Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.


Journal of Proteome Research | 2015

Changes in Protein Expression Across Laboratory and Field Experiments in Geobacter bemidjiensis

Eric D. Merkley; Kelly C. Wrighton; Cindy J. Castelle; Brian J. Anderson; Michael J. Wilkins; Vega Shah; Tyler Arbour; Joseph N. Brown; Steven W. Singer; Richard D. Smith; Mary S. Lipton

Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of G. bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.


Journal of Proteome Research | 2012

Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography–Mass Spectrometry, and Database Searching

Eric D. Merkley; Brian J. Anderson; Jea H. Park; Sara M. Belchik; Liang Shi; Matthew E. Monroe; Richard D. Smith; Mary S. Lipton

Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed or, if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, two bacterial decaheme cytochromes, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded 3- to 6-fold more confident peptide-spectrum matches to heme c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for 4 of the 10 expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering 9 out of 10 sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 1×10(-4) was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

Collaboration


Dive into the Eric D. Merkley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua N. Adkins

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary S. Lipton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andy Lin

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brooke L. Deatherage Kaiser

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David S. Wunschel

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Helen W. Kreuzer

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Janine R. Hutchison

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Liang Shi

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge