Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Duchaud is active.

Publication


Featured researches published by Eric Duchaud.


Nature Biotechnology | 2003

The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens.

Eric Duchaud; Christophe Rusniok; Lionel Frangeul; Carmen Buchrieser; Alain Givaudan; Sead Taourit; Stéphanie Bocs; Caroline Boursaux-Eude; Michael Chandler; Jean-François Charles; Elie Dassa; Richard Derose; Sylviane Derzelle; Georges Freyssinet; Claudine Médigue; Anne Lanois; Kerrie Powell; Patricia Siguier; Rachel Vincent; Vincent Paul Mary Wingate; Mohamed Zouine; Philippe Glaser; Noël Boemare; Antoine Danchin; Frank Kunst

Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.


Nature Biotechnology | 2007

Complete genome sequence of the fish pathogen Flavobacterium psychrophilum

Eric Duchaud; Mekki Boussaha; Valentin Loux; Jean-François Bernardet; Christian Michel; Brigitte Kerouault; Stanislas Mondot; Pierre Nicolas; Robert Bossy; Christophe Caron; Philippe Bessières; Jean-François Gibrat; Stéphane Claverol; Fabien Dumetz; Michel Le Hénaff; Abdenour Benmansour

We report here the complete genome sequence of the virulent strain JIP02/86 (ATCC 49511) of Flavobacterium psychrophilum, a widely distributed pathogen of wild and cultured salmonid fish. The genome consists of a 2,861,988–base pair (bp) circular chromosome with 2,432 predicted protein-coding genes. Among these predicted proteins, stress response mediators, gliding motility proteins, adhesins and many putative secreted proteases are probably involved in colonization, invasion and destruction of the host tissues. The genome sequence provides the basis for explaining the relationships of the pathogen to the host and opens new perspectives for the development of more efficient disease control strategies. It also allows for a better understanding of the physiology and evolution of a significant representative of the family Flavobacteriaceae, whose members are associated with an interesting diversity of lifestyles and habitats.


Applied and Environmental Microbiology | 2002

Identification, Characterization, and Regulation of a Cluster of Genes Involved in Carbapenem Biosynthesis in Photorhabdus luminescens

Sylviane Derzelle; Eric Duchaud; Frank Kunst; Antoine Danchin; Philippe N. Bertin

ABSTRACT The luminescent entomopathogenic bacterium Photorhabdus luminescens produces several yet-uncharacterized broad-spectrum antibiotics. We report the identification and characterization of a cluster of eight genes (named cpmA to cpmH) responsible for the production of a carbapenem-like antibiotic in strain TT01 of P. luminescens. The cpm cluster differs in several crucial aspects from other car operons. The level of cpm mRNA peaks during exponential phase and is regulated by a Rap/Hor homolog identified in the P. luminescens genome. Marker-exchange mutagenesis of this gene in the entomopathogen decreased antibiotic production. The luxS-like signaling mechanism of quorum sensing also plays a role in the regulation of the cpm operon. Indeed, luxS, which is involved in the production of a newly identified autoinducer, is responsible for repression of cpm gene expression at the end of the exponential growth phase. The importance of this carbapenem production in the ecology of P. luminescens is discussed.


Journal of Bacteriology | 2004

The PhoP-PhoQ Two-Component Regulatory System of Photorhabdus luminescens Is Essential for Virulence in Insects

Sylviane Derzelle; Evelyne Turlin; Eric Duchaud; Sylvie Pages; Frank Kunst; Alain Givaudan; Antoine Danchin

Photorhabdus luminescens is a symbiont of entomopathogenic nematodes. Analysis of the genome sequence of this organism revealed a homologue of PhoP-PhoQ, a two-component system associated with virulence in intracellular bacterial pathogens. This organism was shown to respond to the availability of environmental magnesium. A mutant with a knockout mutation in the regulatory component of this system (phoP) had no obvious growth defect. It was, however, more motile and more sensitive to antimicrobial peptides than its wild-type parent. Remarkably, the mutation eliminated virulence in an insect model. No insect mortality was observed after injection of a large number of the phoP bacteria, while very small amounts of parental cells killed insect larvae in less than 48 h. At the molecular level, the PhoPQ system mediated Mg(2+)-dependent modifications in lipopolysaccharides and controlled a locus (pbgPE) required for incorporation of 4-aminoarabinose into lipid A. Mg(2+)-regulated gene expression of pbgP1 was absent in the mutant and was restored when phoPQ was complemented in trans. This finding highlights the essential role played by PhoPQ in the virulence of an entomopathogen.


Journal of Bacteriology | 2002

The PhlA Hemolysin from the Entomopathogenic Bacterium Photorhabdus luminescens Belongs to the Two-Partner Secretion Family of Hemolysins

Julien Brillard; Eric Duchaud; Noël Boemare; Frank Kunst; Alain Givaudan

Photorhabdus is an entomopathogenic bacterium symbiotically associated with nematodes of the family Heterorhabditidae. Bacterial hemolysins found in numerous pathogenic bacteria are often virulence factors. We describe here the nucleotide sequence and the molecular characterization of the Photorhabdus luminescens phlBA operon, a locus encoding a hemolysin which shows similarities to the Serratia type of hemolysins. It belongs to the two-partner secretion (TPS) family of proteins. In low-iron conditions, a transcriptional induction of the phlBA operon was observed by using the chloramphenicol acetyltransferase reporter gene, causing an increase in PhlA hemolytic activity compared to iron-rich media. A spontaneous phase variant of P. luminescens was deregulated in phlBA transcription. The phlA mutant constructed by allelic exchange remained highly pathogenic after injection in the lepidopteran Spodoptera littoralis, indicating that PhlA hemolysin is not a major virulence determinant. Using the gene encoding green fluorescent protein as a reporter, phlBA transcription was observed in hemolymph before insect death. We therefore discuss the possible role of PhlA hemolytic activity in the bacterium-nematode-insect interactions.


Bioinformatics | 2004

CAAT-Box, contigs-Assembly and Annotation Tool-Box for genome sequencing projects

Lionel Frangeul; Philippe Glaser; Christophe Rusniok; Carmen Buchrieser; Eric Duchaud; Pierre Dehoux; Frank Kunst

MOTIVATION Contigs-Assembly and Annotation Tool-Box (CAAT-Box) is a software package developed for the computational part of a genome project where the sequence is obtained by a shotgun strategy. CAAT-Box contains new tools to predict links between contigs by using similarity searches with other whole genome sequences. Most importantly, it allows annotation of a genome to commence during the finishing phase using a gene-oriented strategy. For this purpose, CAAT-Box creates an Individual Protein file (IPF) for each ORF of an assembly. The nucleotide sequence reported in an IPF corresponds to the sequence of the ORF with 500 additional bases before the ORF and 200 bases after. For annotation, additional information like Blast results can be added or linked to the IPFs as well as automatic and/or manual annotations. When a new assembly is performed, CAAT-Box creates new IPFs according to the old IPF panel. CAAT-Box recognizes the modified IPFs which are the only ones used for a new automatic analysis after each assembly. Using this strategy, the user works with a group of IPFs independently of the closure phase progression. The IPFs are accessible by a web server and can therefore be modified and commented by different groups. RESULT CAAT-Box was used to obtain and to annotate several complete genomes like Listeria monocytogenes or Streptococcus agalactiae. AVAILABILITY The program may be obtained from the authors and is freely available to non-profit organisations.


Applied and Environmental Microbiology | 2008

Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum.

Pierre Nicolas; Stanislas Mondot; Guillaume Achaz; Catherine Bouchenot; Jean-François Bernardet; Eric Duchaud

ABSTRACT Flavobacterium psychrophilum is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide, and its control mainly relies on antibiotic treatments. To better understand the population structure of this bacterium and its mode of evolution, we have examined the nucleotide polymorphisms at 11 protein-coding loci of the core genome in a set of 50 isolates. These isolates were selected to represent the broadest possible diversity, originating from 10 different host fish species and four continents. The nucleotide diversity between pairs of sequences amounted to fewer than four differences per kilobase on average, corresponding to a particularly low level of diversity, possibly indicative of a small effective-population size. The recombination rate, however, seemed remarkably high, and as a consequence, most of the isolates harbored unique combinations of alleles (33 distinct sequence types were resolved). The analysis also showed the existence of several clonal complexes with worldwide geographic distribution but marked association with particular fish species. Such an association could reflect preferential routes of transmission and/or adaptive niche specialization. The analysis provided no clues that the initial range of the bacterium was originally limited to North America. Instead, the historical record of the expansion of the pathogen may reflect the spread of a few clonal complexes. As a resource for future epidemiological surveys, a multilocus sequence typing website based on seven highly informative loci is available.


Journal of Applied Microbiology | 2007

The Flavobacterium psychrophilum OmpA, an outer membrane glycoprotein, induces a humoral response in rainbow trout.

F. Dumetz; S.-E. LaPatra; Eric Duchaud; Stéphane Claverol; M. Le Hénaff

Aims:  The purpose of this study was to characterize OmpA, a major glycoprotein isolated from the membrane fraction of Flavobacterium psychrophilum, and to evaluate its potential as antigenic unit in a possible vaccine.


Journal of Bacteriology | 2004

Variation in the Effectors of the Type III Secretion System among Photorhabdus Species as Revealed by Genomic Analysis

Karine Brugirard-Ricaud; Alain Givaudan; Julian Parkhill; Noël Boemare; Frank Kunst; Robert Zumbihl; Eric Duchaud

Entomopathogenic bacteria of the genus Photorhabdus harbor a type III secretion system. This system was probably acquired prior to the separation of the species within this genus. Furthermore, the core components of the secretion machinery are highly conserved but the predicted effectors differ between Photorhabdus luminescens and P. asymbiotica, two highly related species with different hosts.


Applied and Environmental Microbiology | 2011

Complete Genome Sequence of the Fish Pathogen Flavobacterium branchiophilum

Marie Touchon; Paul Barbier; Jean-François Bernardet; Valentin Loux; Benoit Vacherie; Valérie Barbe; Eduardo P. C. Rocha; Eric Duchaud

ABSTRACT Members of the genus Flavobacterium occur in a variety of ecological niches and represent an interesting diversity of lifestyles. Flavobacterium branchiophilum is the main causative agent of bacterial gill disease, a severe condition affecting various cultured freshwater fish species worldwide, in particular salmonids in Canada and Japan. We report here the complete genome sequence of strain FL-15 isolated from a diseased sheatfish (Silurus glanis) in Hungary. The analysis of the F. branchiophilum genome revealed putative mechanisms of pathogenicity strikingly different from those of the other, closely related fish pathogen Flavobacterium psychrophilum, including the first cholera-like toxin in a non-Proteobacteria and a wealth of adhesins. The comparison with available genomes of other Flavobacterium species revealed a small genome size, large differences in chromosome organization, and fewer rRNA and tRNA genes, in line with its more fastidious growth. In addition, horizontal gene transfer shaped the evolution of F. branchiophilum, as evidenced by its virulence factors, genomic islands, and CRISPR (clustered regularly interspaced short palindromic repeats) systems. Further functional analysis should help in the understanding of host-pathogen interactions and in the development of rational diagnostic tools and control strategies in fish farms.

Collaboration


Dive into the Eric Duchaud's collaboration.

Top Co-Authors

Avatar

Pierre Nicolas

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Jean-François Bernardet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean François Bernardet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Tatiana Rochat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Givaudan

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Noël Boemare

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge