Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric E. Boros is active.

Publication


Featured researches published by Eric E. Boros.


Antimicrobial Agents and Chemotherapy | 2008

The Naphthyridinone GSK364735 Is a Novel, Potent Human Immunodeficiency Virus Type 1 Integrase Inhibitor and Antiretroviral

Edward P. Garvey; Brian A. Johns; Margaret J. Gartland; Scott A. Foster; Wayne H. Miller; Robert G. Ferris; Richard J. Hazen; Mark R. Underwood; Eric E. Boros; James B. Thompson; Cecilia S. Koble; Scott H. Allen; Lee T. Schaller; Ronald G. Sherrill; Tomokazu Yoshinaga; Masanori Kobayashi; Chiaki Wakasa-Morimoto; Shigeru Miki; Koichiro Nakahara; Takeshi Noshi; Akihiko Sato; Tamio Fujiwara

ABSTRACT The naphthyridinone GSK364735 potently inhibited recombinant human immunodeficiency virus type 1 (HIV-1) integrase in a strand transfer assay (mean 50% inhibitory concentration ± standard deviation, 8 ± 2 nM). As expected based on the structure of the drug, it bound competitively with another two-metal binding inhibitor (Kd [binding constant], 6 ± 4 nM). In a number of different cellular assays, GSK364735 inhibited HIV replication with potency at nanomolar concentrations (e.g., in peripheral blood mononuclear cells and MT-4 cells, 50% effective concentrations were 1.2 ± 0.4 and 5 ± 1 nM, respectively), with selectivity indexes of antiviral activity versus in-assay cytotoxicity of at least 2,200. When human serum was added, the antiviral potency decreased (e.g., a 35-fold decrease in the presence of 100% human serum was calculated by extrapolation from the results of the MT-4 cell assay). In cellular assays, GSK364735 blocked viral DNA integration, with a concomitant increase in two-long-terminal-repeat circles. As expected, this integrase inhibitor was equally active against wild-type viruses and mutant viruses resistant to approved drugs targeting either reverse transcriptase or protease. In contrast, some but not all viruses resistant to other integrase inhibitors were resistant to GSK364735. When virus was passaged in the presence of the inhibitor, we identified resistance mutations within the integrase active site that were the same as or similar to mutations arising in response to other two-metal binding inhibitors. Finally, either additive or synergistic effects were observed when GSK364735 was tested in combination with approved antiretrovirals (i.e., no antagonistic effects were seen). Thus, based on all the data, GSK364735 exerted potent antiviral activity through the inhibition of viral DNA integration by interacting at the two-metal binding site within the catalytic center of HIV integrase.


Anesthesiology | 2004

Preclinical pharmacology of GW280430A (AV430A) in the rhesus monkey and in the cat: a comparison with mivacurium.

John J. Savarese; Matthew R. Belmont; Mir Hashim; Robert A. Mook; Eric E. Boros; Vicente Samano; Sanjay Patel; Paul L. Feldman; Jan-Ake I. Schultz; Michael McNulty; Timothy D. Spitzer; Douglas L. Cohn; Philip G. Morgan; William B. Wastila

BackgroundNo replacement for succinylcholine is yet available. GW280430A (AV430A) is a representative of a new class of nondepolarizing neuromuscular blocking drugs called asymmetric mixed-onium chlorofumarates. It undergoes rapid degradation in plasma by chemical hydrolysis and inactivation by cysteine adduction, resulting in a very short duration of effect. The neuromuscular, cardiovascular, and autonomic pharmacology of GW280430A is compared herein with that of mivacurium. MethodsAdult male rhesus monkeys and adult male cats were anesthetized with nitrous oxide–oxygen–halothane and chloralose–pentobarbital, respectively. The neuromuscular blocking properties of GW280430A and mivacurium were compared at a stimulation rate of 0.15 Hz in the extensor digitorum of the foot (monkey) and the tibialis anterior (cat). Sympathetic responses were assayed in the cat in the nictitating membrane preparation, and vagal effects were evaluated in the cat via observation of bradycardic responses after stimulation of the cervical right vagus nerve. ResultsGW280430A and mivacurium were equipotent in the monkey (ED95 was 0.06 mg/kg in each case). GW280430A was half as potent as mivacurium in the cat. The total duration of action of GW280430A was less than half that of mivacurium in the monkey; recovery slopes were more than twice as rapid. The 25–75% recovery index of GW280430A did not vary significantly after various bolus doses or infusions, averaging 1.4–1.8 min in the monkey, significantly shorter than the same time interval (4.8–5.7 min) for mivacurium. Dose ratios for autonomic versus neuromuscular blocking properties in the cat were greater than 25 for both GW280430A and mivacurium. The ratio ED Hist:ED95 Neuromuscular Block in the monkey was significantly greater (approximately 53 vs. 13) for GW280430A, indicating approximately four times less relative prominence of the side effects of skin flushing and decrease of blood pressure, which are associated with release of histamine. ConclusionsThese experiments show a much shorter neuromuscular blocking effect and much-reduced side effects in the case of GW280430A vis-à-vis mivacurium. These results, together with the novel chemical degradation of GW280430A, suggest further evaluation in human subjects.


Journal of Medicinal Chemistry | 2015

Discovery, Synthesis, and Biological Evaluation of Thiazoloquin(az)olin(on)es as Potent CD38 Inhibitors

Curt Dale Haffner; J. David Becherer; Eric E. Boros; Rodolfo Cadilla; Tiffany Carpenter; David John Cowan; David N. Deaton; Yu Guo; W. Wallace Harrington; Brad R. Henke; Michael Jeune; Istvan Kaldor; Naphtali Milliken; Kim G. Petrov; Frank Preugschat; Christie Schulte; Barry George Shearer; Todd W. Shearer; Terrence L. Jr. Smalley; Eugene L. Stewart; J. Darren Stuart; John C. Ulrich

A series of thiazoloquin(az)olinones were synthesized and found to have potent inhibitory activity against CD38. Several of these compounds were also shown to have good pharmacokinetic properties and demonstrated the ability to elevate NAD levels in plasma, liver, and muscle tissue. In particular, compound 78c was given to diet induced obese (DIO) C57Bl6 mice, elevating NAD > 5-fold in liver and >1.2-fold in muscle versus control animals at a 2 h time point. The compounds described herein possess the most potent CD38 inhibitory activity of any small molecules described in the literature to date. The inhibitors should allow for a more detailed assessment of how NAD elevation via CD38 inhibition affects physiology in NAD deficient states.


Journal of Medicinal Chemistry | 2013

Discovery of a Highly Potent, Nonabsorbable Apical Sodium-Dependent Bile Acid Transporter Inhibitor (GSK2330672) for Treatment of Type 2 Diabetes

Yulin Wu; Christopher Joseph Aquino; David John Cowan; Don L. Anderson; Jeff L. Ambroso; Michael J. Bishop; Eric E. Boros; Lihong Chen; Alan Cunningham; Robert L. Dobbins; Paul L. Feldman; Lindsey T. Harston; Istvan Kaldor; Ryan Klein; Xi Liang; Maggie S. McIntyre; Christine L. Merrill; Kristin M. Patterson; Judith S. Prescott; John S. Ray; Shane Roller; Xiaozhou Yao; Andrew A. Young; Josephine Yuen; Jon L. Collins

The apical sodium-dependent bile acid transporter (ASBT) transports bile salts from the lumen of the gastrointestinal (GI) tract to the liver via the portal vein. Multiple pharmaceutical companies have exploited the physiological link between ASBT and hepatic cholesterol metabolism, which led to the clinical investigation of ASBT inhibitors as lipid-lowering agents. While modest lipid effects were demonstrated, the potential utility of ASBT inhibitors for treatment of type 2 diabetes has been relatively unexplored. We initiated a lead optimization effort that focused on the identification of a potent, nonabsorbable ASBT inhibitor starting from the first-generation inhibitor 264W94 (1). Extensive SAR studies culminated in the discovery of GSK2330672 (56) as a highly potent, nonabsorbable ASBT inhibitor which lowers glucose in an animal model of type 2 diabetes and shows excellent developability properties for evaluating the potential therapeutic utility of a nonabsorbable ASBT inhibitor for treatment of patients with type 2 diabetes.


Journal of Medicinal Chemistry | 2009

Synthesis and antiviral activity of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV integrase inhibitors.

Eric E. Boros; Cynthia E. Edwards; Scott A. Foster; Masahiro Fuji; Tamio Fujiwara; Edward P. Garvey; Pamela L. Golden; Richard J. Hazen; Jerry Jeffrey; Brian A. Johns; Takashi Kawasuji; Ryuichi Kiyama; Cecilia S. Koble; Noriyuki Kurose; Wayne H. Miller; Angela L. Mote; Hitoshi Murai; Akihiko Sato; James B. Thompson; Mark C. Woodward; Tomokazu Yoshinaga

The medicinal chemistry and structure-activity relationships for a novel series of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV-integrase inhibitors are disclosed. Substituent effects were evaluated at the N-1, C-3, and 7-benzyl positions of the naphthyridinone ring system. Low nanomolar IC(50) values were achieved in an HIV-integrase strand transfer assay with both carboxylic ester and carboxamide groups at C-3. More importantly, several carboxamide congeners showed potent antiviral activity in cellular assays. A 7-benzyl substituent was found to be critical for potent enzyme inhibition, and an N-(2-methoxyethyl)carboxamide moiety at C-3 significantly reduced plasma protein binding effects in vitro. Pharmacokinetic data in rats for one carboxamide analogue demonstrated oral bioavailability and reasonable in vivo clearance.


Journal of Medicinal Chemistry | 2015

Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38.

J.D Becherer; Eric E. Boros; Tiffany Carpenter; David John Cowan; David N. Deaton; Curt Dale Haffner; Michael Jeune; Istvan Kaldor; J.C Poole; Frank Preugschat; T.R Rheault; Christie Schulte; Barry George Shearer; Todd W. Shearer; L.M Shewchuk; Terrence L. Jr. Smalley; Eugene L. Stewart; J.D Stuart; John C. Ulrich

Starting from the micromolar 8-quinoline carboxamide high-throughput screening hit 1a, a systematic exploration of the structure-activity relationships (SAR) of the 4-, 6-, and 8-substituents of the quinoline ring resulted in the identification of approximately 10-100-fold more potent human CD38 inhibitors. Several of these molecules also exhibited pharmacokinetic parameters suitable for in vivo animal studies, including low clearances and decent oral bioavailability. Two of these CD38 inhibitors, 1ah and 1ai, were shown to elevate NAD tissue levels in liver and muscle in a diet-induced obese (DIO) C57BL/6 mouse model. These inhibitor tool compounds will enable further biological studies of the CD38 enzyme as well as the investigation of the therapeutic implications of NAD enhancement in disease models of abnormally low NAD.


Journal of Organic Chemistry | 2009

Facile Reductive Amination of Aldehydes with Electron-Deficient Anilines by Acyloxyborohydrides in TFA: Application to a Diazaindoline Scale-Up

Eric E. Boros; James B. Thompson; Subba R. Katamreddy; Andrew J. Carpenter

A scale-up of diazaindoline 1 was achieved in four stages and 32% overall yield. The key step involved rapid reductive amination of aldehyde 8 with aniline 5 by sodium triacetoxyborohydride (STAB-H) and TFA followed by ring closure of intermediate amine 9 to compound 1 in the same pot. These reaction conditions were also applied to facile reductive aminations with anilines known to have little reactivity under STAB-H/AcOH conditions. Spectral data supported the tris(trifluoroacetoxy)borohydride anion (16) as the active reducing agent.


Bioorganic & Medicinal Chemistry Letters | 2013

Naphthyridinone (NTD) integrase inhibitors: N1 Protio and methyl combination substituent effects with C3 amide groups

Brian A. Johns; Takashi Kawasuji; Eric E. Boros; James B. Thompson; Cecilia S. Koble; Edward P. Garvey; Scott A. Foster; Jerry Jeffrey; Tamio Fujiwara

Substituent effects of a series of N1 protio and methyl naphthyridinone HIV-1 integrase strand-transfer inhibitors has been explored. The effects of combinations of the N1 substituent and C3 amide groups was extensively studied to compare enzyme inhibition, antiviral activity and protein binding effects on potency. The impact of substitution on ligand efficiency was considered and several compounds were advanced into in vivo pharmacokinetic studies ultimately leading to the clinical candidate GSK364735.


Journal of Medicinal Chemistry | 2012

Discovery of 6,7-Dihydro-5H-pyrrolo[2,3-a]pyrimidines as Orally Available G Protein-Coupled Receptor 119 Agonists

Subba Reddy Katamreddy; Andrew J. Carpenter; Carina Ammala; Eric E. Boros; Ron L. Brashear; Celia P. Briscoe; Sarah R. Bullard; Richard Dana Caldwell; Christopher R. Conlee; Dallas K. Croom; Shane M. Hart; Dennis Heyer; Paul R. Johnson; Jennifer A. Kashatus; Doug Minick; Gregory Peckham; Sean Ross; Shane Roller; Vicente Samano; Howard Sauls; Sarva M. Tadepalli; James B. Thompson; Yun Xu; James M. Way

GPR119 is a 7-transmembrane receptor that is expressed in the enteroendocrine cells in the intestine and in the islets of Langerhans in the pancreas. Indolines and 6,7-dihydro-5H-pyrrolo[2,3-a]pyrimidines were discovered as G protein-coupled receptor 119 (GPR119) agonists, and lead optimization efforts led to the identification of 1-methylethyl 4-({7-[2-fluoro-4-(methylsulfonyl)phenyl]-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)-1-piperidinecarboxylate (GSK1104252A) (3), a potent and selective GPR119 agonist. Compound 3 showed excellent pharmacokinetic properties and sufficient selectivity with in vivo studies supporting a role for GPR119 in glucose homeostasis in the rodent. Thus, 3 appeared to modulate the enteroinsular axis, improve glycemic control, and strengthen previous suggestions that GPR119 agonists may have utility in the treatment of type 2 diabetes.


Bioorganic & Medicinal Chemistry Letters | 2011

Combining symmetry elements results in potent naphthyridinone (NTD) HIV-1 integrase inhibitors

Brian A. Johns; Takashi Kawasuji; Eric E. Boros; James B. Thompson; Edward P. Garvey; Scott A. Foster; Jerry Jeffrey; Wayne H. Miller; Noriyuki Kurose; Kenichi Matsumura; Tamio Fujiwara

A series of naphthyridinone HIV-1 integrase strand-transfer inhibitors have been designed based on a psdeudo-C2 symmetry element present in the two-metal chelation pharmacophore. A combination of two distinct inhibitor binding modes resulted in potent inhibition of the integrase strand-transfer reaction in the low nM range. Effects of aryl and N1 substitutions are disclosed including the impact on protein binding adjusted antiviral activity.

Collaboration


Dive into the Eric E. Boros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge