Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric E. Simanek is active.

Publication


Featured researches published by Eric E. Simanek.


Chemical Reviews | 2009

Nonviral Vectors for Gene Delivery

Meredith A. Mintzer; Eric E. Simanek

The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less


Molecular Pharmaceutics | 2010

Cancer therapies utilizing the camptothecins: a review of the in vivo literature.

Vincent J. Venditto; Eric E. Simanek

This review summarizes the in vivo assessment-preliminary, preclinical, and clinical-of chemotherapeutics derived from camptothecin or a derivative. Camptothecin is a naturally occurring, pentacyclic quinoline alkaloid that possesses high cytotoxic activity in a variety of cell lines. Major limitations of the drug, including poor solubility and hydrolysis under physiological conditions, prevent full clinical utilization. Camptothecin remains at equilibrium in an active lactone form and inactive hydrolyzed carboxylate form. The active lactone binds to DNA topoisomerase I cleavage complex, believed to be the single site of activity. Binding inhibits DNA religation, resulting in apoptosis. A series of small molecule camptothecin derivatives have been developed that increase solubility, lactone stability and bioavailability to varying levels of success. A number of macromolecular agents have also been described wherein camptothecin(s) are covalently appended or noncovalently associated with the goal of improving solubility and lactone stability, while taking advantage of the tumor physiology to deliver larger doses of drug to the tumor with lower systemic toxicity. With the increasing interest in drug delivery and polymer therapeutics, additional constructs are anticipated. The goal of this review is to summarize the relevant literature for others interested in the field of camptothecin-based therapeutics, specifically in the context of biodistribution, dosing regimens, and pharmacokinetics with the desire of providing a useful source of comparative data. To this end, only constructs where in vivo data is available are reported. The review includes published reports in English through mid-2009.


Advanced Drug Delivery Reviews | 2012

Triazine dendrimers as drug delivery systems: From synthesis to therapy ☆

Jongdoo Lim; Eric E. Simanek

The use of triazine dendrimers as drug delivery systems benefits from their synthetic versatility and well-defined structure. Triazine dendrimers can be designed and readily synthesized to display orthogonally functional surfaces that facilitate post-synthetic manipulation such as attachment of drug, PEGylation, and/or the installation of ligands or reporting groups. The synthesis is scalable, and large generations can be accessed. To date, triazine dendrimers have been probed for a variety of medicinal applications including drug delivery with an emphasis on cancer, nonviral DNA and RNA delivery systems, in sensing applications, and as bioactive materials. Specifically, triazine adducts with paclitaxel, camptothecin, brefeldin A, and desferrioxamine have been prepared and assessed. Paclitaxel constructs show promising activity in vivo. The use of these materials in fluorescence-based glucose sensors is being pursued. Glycosylated triazine dendrimers interfere with signal transduction in the Toll-4 receptor pathway.


Nanotechnology | 2005

Engineering nanospaces: ordered mesoporous silicas as model substrates for building complex hybrid materials

David M. Ford; Eric E. Simanek; Daniel F. Shantz

This contribution summarizes investigations of organic-inorganic hybrid materials wherein the inorganic phase is ordered mesoporous silica such as MCM-41 and SBA-15. The review, which covers work performed in the last three years, emphasizes studies of: (1) covalently attached functional groups, (2) new approaches to functionalization, (3) approaches for achieving high densities of uniform functional groups, (4) periodic mesoporous organosilicas (PMOs) with hierarchical ordering, (5) new functional chemistries, and (6) the application of new materials to enantioselective catalysis and emerging areas. The review concludes with the authors outlining some outstanding problems in the field.


Molecular Pharmaceutics | 2010

Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi: the effects of peripheral groups and core structure on biological activity.

Olivia M. Merkel; Meredith A. Mintzer; Damiano Librizzi; Olga Samsonova; Tanja Dicke; Brian S. Sproat; Holger Garn; Peter J. Barth; Eric E. Simanek; Thomas Kissel

A family of triazine dendrimers, differing in their core flexibility, generation number, and surface functionality, was prepared and evaluated for its ability to accomplish RNAi. The dendriplexes were analyzed with respect to their physicochemical and biological properties, including condensation of siRNA, complex size, surface charge, cellular uptake and subcellular distribution, their potential for reporter gene knockdown in HeLa/Luc cells, and ultimately their stability, biodistribution, pharmacokinetics and intracellular uptake in mice after intravenous (iv) administration. The structure of the backbone was found to significantly influence siRNA transfection efficiency, with rigid, second generation dendrimers displaying higher gene knockdown than the flexible analogues while maintaining less off-target effects than Lipofectamine. Additionally, among the rigid, second generation dendrimers, those with either arginine-like exteriors or peripheries containing hydrophobic functionalities mediated the most effective gene knockdown, thus showing that dendrimer surface groups also affect transfection efficiency. Moreover, these two most effective dendriplexes were stable in circulation upon intravenous administration and showed passive targeting to the lung. Both dendriplex formulations were taken up into the alveolar epithelium, making them promising candidates for RNAi in the lung. The ability to correlate the effects of triazine dendrimer core scaffolds, generation number, and surface functionality with siRNA transfection efficiency yields valuable information for further modifying this nonviral delivery system and stresses the importance of only loosely correlating effective gene delivery vectors with siRNA transfection agents.


Molecular Pharmaceutics | 2008

The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers.

Jongdoo Lim; Yi Guo; Cynthia L. Rostollan; Jennifer Stanfield; Jer Tsong Hsieh; Xiankai Sun; Eric E. Simanek

The synthesis and biodistribution of three triazine dendrimers differing in PEGylation are described. Dendrimers 1, 2, and 3 are derived from a common intermediate, dendrimer 4, and vary in molecular mass from 11 to 73 kDa as a result of PEGylation with multiple (theoretically, 16) PEG groups of 0.6, 2, and 5 kDa, respectively. As expected, elimination half-lives increased with an increase in molecular mass. In light of other results, however, molecular mass proves not to be the primary determinant of elimination half-lives. Instead, these times can be more readily predicted from the number of PEG groups on the dendrimer: the size of the PEG chain contributes to a lesser extent. Tumor uptake is observed for all the three dendrimers in mice bearing prostate cancer xenografts.


Bioconjugate Chemistry | 2009

Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity.

Olivia M. Merkel; Meredith A. Mintzer; Johannes Sitterberg; Udo Bakowsky; Eric E. Simanek; Thomas Kissel

A family of generation 1, 2, and 3 triazine dendrimers differing in their core flexibility was prepared and evaluated for their ability to accomplish gene transfection. Dendrimers and dendriplexes were analyzed by their physicochemical and biological properties such as condensation of DNA, size, surface charge, morphology of dendriplexes, toxic and hemolytic effects, and ultimately transfection efficiency in L929 and MeWo cells. Flexibility of the backbone was found to play an important role with generation 2 dendrimer displaying higher transfection efficiencies than 25 kDa poly(ethylene imine) or SuperFect at a lower cytotoxicity level. This result is surprising, as PAMAM dendrimers require generations 4 or 5 to become effective transfection reagents. The ability to delineate effects of molecular structure and generation of triazine dendrimers with biological properties provides valuable clues for further modifying this promising class of nonviral delivery system.


Journal of Organic Chemistry | 2008

Kilogram-Scale Synthesis of a Second-Generation Dendrimer Based on 1,3,5-Triazine Using Green and Industrially Compatible Methods with a Single Chromatographic Step

Abdellatif Chouai; Eric E. Simanek

A kilogram scale, divergent and iterative synthesis of a second generation, triazine dendrimer with 12 protected amines on the periphery using common laboratory equipment is reported. The route benefits from common reaction conditions, inexpensive reagents, and aqueous solvents. From the monomers, the desired product dendrimer--the last uncommitted intermediate that leads to a range of committed, generation three targets--can be obtained in 70% overall yield. Of critical importance in the execution of this divergent synthesis is the differential reactivity of chlorine atoms of trichlorotriazine. The stepwise, nucleophilic aromatic substitution of these atoms with amine nucleophiles is both the basis for the dendrimer growth as well as incorporation of solubilizing piperidine groups. Intermediates are obtained and purified through precipitation and/or extraction protocols with the exception of the final product. Isolation of the target dendrimer requires a single silica gel plug filtration. The purity of this material is assessed at >93%, a level consistent with and/or exceeding other commercially available targets.


Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2010

The 8 year thicket of triazine dendrimers: strategies, targets and applications

Eric E. Simanek; Hanan Abdou; Sanjiv Lalwani; Jongdoo Lim; Meredith A. Mintzer; Vincent J. Venditto; Brandon Vittur

This manuscript focuses on the routes, methods and reagents used to synthesize triazine-based dendrimers. Our pursuit of macromolecular architectures for drug delivery—dendrimers based on triazines—has been an ongoing effort for 8 years. To date, we have produced complex dendrimers with diverse peripheries as proof-of-concept, less complex molecules tailored for specific applications including DNA and RNA delivery and drug-decorated dendrimers for potential therapeutic applications including infectious disease and cancer. These syntheses have been executed at scales that range from high milligrams to over a kilogram. The routes, reagents and diversity displayed by a target anchors it in time. Early targets derive from convergent synthetic routes while later targets are prepared using divergent syntheses. The core of early dendrimers was a simple diamine, including piperazine, yielding the so-called bow-tie structures, middle period targets boast either a trispiperazinyltriazine core or a ‘super-core’ with six piperazine groups. Later targets return to the trispiperazinyltriazine core. The choice of linking diamine has also changed. Over time, p-aminobenzylamine was replaced by piperazine and then by aminomethylpiperidine with more exotic diamines sprinkled in throughout. Peripheral group choice has undergone similar variations: from AB2 to AB4 to, more recently, AB3. The diversity communicated by these groups yields dendrimers ranging from those with a common surface to examples where two groups were presented to those where four orthogonally reactive groups appear. Over time, these groups have grown in complexity from protected amines to tags for biodistribution and drugs like paclitaxel. Herein, strategies adopted and lessons learned are reviewed, intuitions relayed and future directions forecast.


Journal of the American Chemical Society | 2013

Synthesis of large dendrimers with the dimensions of small viruses.

Jongdoo Lim; Mauri A. Kostiainen; Jan Maly; Viviana C. P. da Costa; Onofrio Annunziata; Giovanni Maria Pavan; Eric E. Simanek

The dendrimer chemistry reported offers a route to synthetic target molecules with spherical shape, well-defined surface chemistries, and dimensions that match the size of virus particles. The largest target, a generation-13 dendrimer comprising triazines linked by diamines, is stable across ranges of concentration, pH, temperature, solvent polarity and in the presence of additives. This dendrimer theoretically presents 16,384 surface groups and has a molecular weight exceeding 8.4 MDa. Transmission electron and atomic force microscopies, dynamic light scattering, and computations reveal a diameter of ~30 nm. The target was synthesized through an iterative divergent approach using a monochlorotriazine macromonomer providing two generations of growth per synthetic cycle. Fidelity in the synthesis is supported by evidence from NMR spectroscopy, mass spectrometry, and high-pressure liquid chromatography.

Collaboration


Dive into the Eric E. Simanek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jongdoo Lim

Texas Christian University

View shared research outputs
Top Co-Authors

Avatar

Alan E. Enciso

Texas Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge