Eric E. Swayze
Isis Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric E. Swayze.
Annual Review of Pharmacology and Toxicology | 2010
C. Frank Bennett; Eric E. Swayze
Dramatic advances in understanding of the roles RNA plays in normal health and disease have greatly expanded over the past 10 years and have made it clear that scientists are only beginning to comprehend the biology of RNAs. It is likely that RNA will become an increasingly important target for therapeutic intervention; therefore, it is important to develop strategies for therapeutically modulating RNA function. Antisense oligonucleotides are perhaps the most direct therapeutic strategy to approach RNA. Antisense oligonucleotides are designed to bind to the target RNA by well-characterized Watson-Crick base pairing, and once bound to the target RNA, modulate its function through a variety of postbinding events. This review focuses on the molecular mechanisms by which antisense oligonucleotides can be designed to modulate RNA function in mammalian cells and how synthetic oligonucleotides behave in the body.
Nucleic Acids Research | 2007
Eric E. Swayze; Andrew M. Siwkowski; Edward Wancewicz; Michael T. Migawa; Tadeusz K. Wyrzykiewicz; Gene Hung; Brett P. Monia; and C. Frank Bennett
A series of antisense oligonucleotides (ASOs) containing either 2′-O-methoxyethylribose (MOE) or locked nucleic acid (LNA) modifications were designed to investigate whether LNA antisense oligonucleotides (ASOs) have the potential to improve upon MOE based ASO therapeutics. Some, but not all, LNA containing oligonucleotides increased potency for reducing target mRNA in mouse liver up to 5-fold relative to the corresponding MOE containing ASOs. However, they also showed profound hepatotoxicity as measured by serum transaminases, organ weights and body weights. This toxicity was evident for multiple sequences targeting three different biological targets, as well as in mismatch control sequences having no known mRNA targets. Histopathological evaluation of tissues from LNA treated animals confirmed the hepatocellular involvement. Toxicity was observed as early as 4 days after a single administration. In contrast, the corresponding MOE ASOs showed no evidence for toxicity while maintaining the ability to reduce target mRNA. These studies suggest that while LNA ASOs have the potential to improve potency, they impose a significant risk of hepatotoxicity.
Cell | 2012
Dongbo Yu; Hannah Pendergraff; Jing Liu; Holly Kordasiewicz; Don W. Cleveland; Eric E. Swayze; Walt F. Lima; Stanley T. Crooke; Thazha P. Prakash; David R. Corey
Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.
Nucleic Acids Research | 2014
Thazha P. Prakash; Mark J. Graham; Jinghua Yu; Rick Carty; Audrey Low; Alfred Chappell; Karsten Schmidt; Chenguang Zhao; Mariam Aghajan; Heather F. Murray; Stan Riney; Sheri L. Booten; Susan F. Murray; Hans Gaus; Jeff Crosby; Walt F. Lima; Shuling Guo; Brett P. Monia; Eric E. Swayze; Punit P. Seth
Triantennary N-acetyl galactosamine (GalNAc, GN3), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6–10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2′-O-Et-2′,4′-bridged nucleic acid) gapmer ASOs, ∼60-fold enhancement in potency relative to the parent MOE (2′-O-methoxyethyl RNA) ASO was observed. GN3-conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3-ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3-ASO conjugate was detected in plasma suggesting that GN3 acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs.
Biochemistry | 2010
Keith T. Gagnon; Hannah Pendergraff; Glen F. Deleavey; Eric E. Swayze; Pierre Potier; John Randolph; Eric B. Roesch; Jyoti Chattopadhyaya; Masad J. Damha; C. Frank Bennett; Christophe Montaillier; Marc M. Lemaitre; David R. Corey
Huntingtons disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. Several ASOs incorporating a variety of modifications, including bridged nucleic acids and phosphorothioate internucleotide linkages, exhibited allele-selective silencing in patient-derived fibroblasts. Allele-selective ASOs did not affect the expression of other CAG repeat-containing genes and selectivity was observed in cell lines containing minimal CAG repeat lengths representative of most HD patients. Allele-selective ASOs left HTT mRNA intact and did not support ribonuclease H activity in vitro. We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
Nucleic Acids Research | 2006
Erich Koller; Stephanie Propp; Heather M. Murray; Walter Lima; Balkrishen Bhat; Thaza P. Prakash; Charles Allerson; Eric E. Swayze; Eric G. Marcusson; Nicholas M. Dean
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2′-O-methyl and 2′-deoxy-2′-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.
Nucleic Acids Research | 2013
Michael E. Østergaard; Amber L. Southwell; Holly Kordasiewicz; Andrew T. Watt; Niels H. Skotte; Crystal N. Doty; Kuljeet Vaid; Erika B. Villanueva; Eric E. Swayze; C. Frank Bennett; Michael R. Hayden; Punit P. Seth
Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders.
Molecular Therapy | 2014
Amber L. Southwell; Niels H. Skotte; Holly Kordasiewicz; Michael E. Østergaard; Andrew T. Watt; Jeffrey B. Carroll; Crystal N. Doty; Erika B. Villanueva; Eugenia Petoukhov; Kuljeet Vaid; Yuanyun Xie; Susan M. Freier; Eric E. Swayze; Punit P. Seth; C. Bennett; Michael R. Hayden
Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.
Bioorganic & Medicinal Chemistry Letters | 2003
Yun He; Baogen Wu; Jun Yang; Dale E. Robinson; Lisa M. Risen; Ray Ranken; Lawrence B. Blyn; Suzie Sheng; Eric E. Swayze
A series of 2-piperidin-4-yl-benzimidazoles were synthesized and evaluated for antibacterial activities. Certain compounds inhibit bacterial growth with low micromolar minimal inhibitory concentration (MIC). These benzimidazoles are effective against both Gram-positive and Gram-negative bacteria of clinical importance, particularly enterococci, and represent a new class of potential antibacterial agents.
Tetrahedron Letters | 1997
Eric E. Swayze
Abstract The electron rich benzaldehyde derivatives 4-hydroxybenzaldehyde and 2-methoxy-4-hydroxybenzaldehyde have been investigated for use as linkers for solid phase organic synthesis. Reductive amination of these aldehydes attached to ArgoGel resins with a model primary amine gave the corresponding benzylic secondary amines. These compounds were then converted to the corresponding ureas, sulfonamides, aryl amides, and alkyl amides by derivatization with an appropriate electrophile The desired secondary amide derivative was then cleaved from the support by treatment with trifluoroacetic acid to provide essentially quantitative yields of products in high purity.