Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Eaton is active.

Publication


Featured researches published by Eric Eaton.


european conference on machine learning | 2008

Modeling Transfer Relationships Between Learning Tasks for Improved Inductive Transfer

Eric Eaton; Marie desJardins; Terran Lane

In this paper, we propose a novel graph-based method for knowledge transfer. We model the transfer relationships between source tasks by embedding the set of learned source models in a graph using transferability as the metric. Transfer to a new problem proceeds by mapping the problem into the graph, then learning a function on this graph that automatically determines the parameters to transfer to the new learning task. This method is analogous to inductive transfer along a manifold that captures the transfer relationships between the tasks. We demonstrate improved transfer performance using this method against existing approaches in several real-world domains.


international conference on machine learning | 2006

Learning user preferences for sets of objects

Marie desJardins; Eric Eaton; Kiri L. Wagstaff

Most work on preference learning has focused on pairwise preferences or rankings over individual items. In this paper, we present a method for learning preferences over sets of items. Our learning method takes as input a collection of positive examples---that is, one or more sets that have been identified by a user as desirable. Kernel density estimation is used to estimate the value function for individual items, and the desired set diversity is estimated from the average set diversity observed in the collection. Since this is a new learning problem, we introduce a new evaluation methodology and evaluate the learning method on two data collections: synthetic blocks-world data and a new real-world music data collection that we have gathered.


Ai Magazine | 2015

The 2014 International Planning Competition: Progress and Trends

Stefano V. Albrecht; J. Christopher Beck; David L. Buckeridge; Adi Botea; Cornelia Caragea; Chi-Hung Chi; Theodoros Damoulas; Bistra Dilkina; Eric Eaton; Pooyan Fazli; Sam Ganzfried; C. Lee Giles; Sébastien Guillet; Robert C. Holte; Frank Hutter; Thorsten Koch; Matteo Leonetti; Marius Lindauer; Marlos C. Machado; Yuri Malitsky; Gary F. Marcus; Sebastiaan Meijer; Francesca Rossi; Arash Shaban-Nejad; Sylvie Thiébaux; Manuela M. Veloso; Toby Walsh; Can Wang; Jie Zhang; Yu Zheng

We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems.


Scientific Reports | 2016

MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine

Gilmer Valdes; José Marcio Luna; Eric Eaton; Charles B. Simone; Lyle H. Ungar; Timothy D. Solberg

Machine learning algorithms that are both interpretable and accurate are essential in applications such as medicine where errors can have a dire consequence. Unfortunately, there is currently a tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees are interpretable and are therefore used extensively throughout medicine for stratifying patients. Current decision tree algorithms, however, are consistently outperformed in accuracy by other, less-interpretable machine learning models, such as ensemble methods. We present MediBoost, a novel framework for constructing decision trees that retain interpretability while having accuracy similar to ensemble methods, and compare MediBoost’s performance to that of conventional decision trees and ensemble methods on 13 medical classification problems. MediBoost significantly outperformed current decision tree algorithms in 11 out of 13 problems, giving accuracy comparable to ensemble methods. The resulting trees are of the same type as decision trees used throughout clinical practice but have the advantage of improved accuracy. Our algorithm thus gives the best of both worlds: it grows a single, highly interpretable tree that has the high accuracy of ensemble methods.


international conference on data mining | 2009

Set-Based Boosting for Instance-Level Transfer

Eric Eaton; Marie desJardins

The success of transfer to improve learning on a target task is highly dependent on the selected source data. Instance-based transfer methods reuse data from the source tasks to augment the training data for the target task. If poorly chosen, this source data may inhibit learning, resulting in negative transfer. The current best performing algorithm for instance-based transfer, TrAdaBoost, performs poorly when given irrelevant source data. We present a novel set-based boosting technique for instance-based transfer. The proposed algorithm, TransferBoost, boosts both individual instances and collective sets of instances from each source task. In effect, TransferBoost boosts each source task, assigning higher weight to those source tasks which show positive transferability to the target task, and then adjusts the weights of the instances within each source task via AdaBoost. The results demonstrate that TransferBoost significantly improves transfer performance over existing instance-based algorithms when given a mix of relevant and irrelevant source data.


Knowledge and Information Systems | 2014

Multi-View Constrained Clustering with an Incomplete Mapping Between Views

Eric Eaton; Marie desJardins; Sara Jacob

Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and then update the clustering model. By alternating the learning process between views, this approach produces a unified clustering model that is consistent with all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views. Our evaluation reveals that the propagated constraints have high precision with respect to the true clusters in the data, explaining their benefit to clustering performance in both single- and multi-view learning scenarios.


conference on information and knowledge management | 2010

Multi-view clustering with constraint propagation for learning with an incomplete mapping between views

Eric Eaton; Marie desJardins; Sara Jacob

Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and update the clustering model, thereby learning a unified model for all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views.


Journal of Experimental and Theoretical Artificial Intelligence | 2010

Modelling and learning user preferences over sets

Kiri L. Wagstaff; Marie desJardins; Eric Eaton

Although there has been significant research on modelling and learning user preferences for various types of objects, there has been relatively little work on the problem of representing and learning preferences over sets of objects. We introduce a representation language, DD-PREF, that balances preferences for particular objects with preferences about the properties of the set. Specifically, we focus on the depth of objects (i.e. preferences for specific attribute values over others) and on the diversity of sets (i.e. preferences for broad vs. narrow distributions of attribute values). The DD-PREF framework is general and can incorporate additional object- and set-based preferences. We describe a greedy algorithm, DD-Select, for selecting satisfying sets from a collection of new objects, given a preference in this language. We show how preferences represented in DD-PREF can be learned from training data. Experimental results are given for three domains: a blocks world domain with several different task-based preferences, a real-world music playlist collection, and rover image data gathered in desert training exercises.


Pattern Recognition | 2017

Estimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines

Decebal Constantin Mocanu; Haitham Bou Ammar; Luis Puig; Eric Eaton; Antonio Liotta

Estimation, recognition, and near-future prediction of 3D trajectories based on their two dimensional projections available from one camera source is an exceptionally difficult problem due to uncertainty in the trajectories and environment, high dimensionality of the specific trajectory states, lack of enough labeled data and so on. In this article, we propose a solution to solve this problem based on a novel deep learning model dubbed disjunctive factored four-way conditional restricted Boltzmann machine (DFFW-CRBM). Our method improves state-of-the-art deep learning techniques for high dimensional time-series modeling by introducing a novel tensor factorization capable of driving forth order Boltzmann machines to considerably lower energy levels, at no computational costs. DFFW-CRBMs are capable of accurately estimating, recognizing, and performing near-future prediction of three-dimensional trajectories from their 2D projections while requiring limited amount of labeled data. We evaluate our method on both simulated and real-world data, showing its effectiveness in predicting and classifying complex ball trajectories and human activities.


intelligent robots and systems | 2016

Lifelong learning for disturbance rejection on mobile robots

David Isele; José-Marcio Luna; Eric Eaton; Gabriel Victor de la Cruz; James Irwin; Brandon Kallaher; Matthew E. Taylor

No two robots are exactly the same-even for a given model of robot, different units will require slightly different controllers. Furthermore, because robots change and degrade over time, a controller will need to change over time to remain optimal. This paper leverages lifelong learning in order to learn controllers for different robots. In particular, we show that by learning a set of control policies over robots with different (unknown) motion models, we can quickly adapt to changes in the robot, or learn a controller for a new robot with a unique set of disturbances. Furthermore, the approach is completely model-free, allowing us to apply this method to robots that have not, or cannot, be fully modeled.

Collaboration


Dive into the Eric Eaton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Ruvolo

Franklin W. Olin College of Engineering

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitham Bou Ammar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Matthew E. Taylor

Washington State University

View shared research outputs
Top Co-Authors

Avatar

David Isele

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kiri L. Wagstaff

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mohammad Rostami

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

José Marcio Luna

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rasul Tutunov

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge