Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric G. DeChaine is active.

Publication


Featured researches published by Eric G. DeChaine.


American Journal of Botany | 2005

Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains

Eric G. DeChaine; Andrew P. Martin

Climate change during the Quaternary played an important role in the differentiation and evolution of plants. A prevailing hypothesis is that alpine and arctic species survived glacial periods in refugia at the periphery of glaciers. Though the Rocky Mountains, south of the southernmost extent of continental ice, served as an important glacial refuge, little is known about how climate cycles influenced populations within this region. We inferred the phylogeography of Sedum lanceolatum (Crassulaceae) within the Rocky Mountain refugium to assess how this high-elevation plant responded to glacial cycles. We sequenced 884 base pairs (bp) of cpDNA intergenic spacers (tRNA-L to tRNA-F and tRNA-S to tRNA-G) for 333 individuals from 18 alpine populations. Our highly variable markers allowed us to infer that populations persisted across the latitudinal range throughout the climate cycles, exhibited significant genetic structure, and experienced cycles of range expansion and fragmentation. Genetic differentiation in S. lanceolatum was most likely a product of short-distance elevational migration in response to climate change, low seed dispersal, and vegetative reproduction. To the extent that Sedum is a good model system, paleoclimatic cycles were probably a major factor preserving genetic variation and promoting divergence in high-elevation flora of the Rocky Mountains.


Evolution | 2006

USING COALESCENT SIMULATIONS TO TEST THE IMPACT OF QUATERNARY CLIMATE CYCLES ON DIVERGENCE IN AN ALPINE PLANT-INSECT ASSOCIATION

Eric G. DeChaine; Andrew P. Martin

Abstract The Quaternary climate cycles forced species to repeatedly migrate across a continually changing landscape. How these shifts in distribution impacted the evolution of unrelated but ecologically associated taxa has remained elusive due to the stochastic nature of the evolutionary process and variation in species-specific biological characteristics and environmental constraints. To account for the uncertainty in genealogical estimates, we adopted a coalescent approach for testing hypotheses of population divergence in coevolving taxa. We compared genealogies of a specialized herbivorous insect, Parnassius smintheus (Papilionidae), and its host plant, Sedum lanceolatum (Crassulaceae), from the alpine tundra of the Rocky Mountains to null distributions from coalescent simulations to test whether tightly associated taxa shared a common response to the paleoclimatic cycles. Explicit phylogeographic models were generated from geologic and biogeographic data and evaluated over a wide range of divergence times given calibrated mutation rates for both species. Our analyses suggest that the insect and its host plant responded similarly but independently to the climate cycles. By promoting habitat expansion and mixing among alpine populations, glacial periods repeatedly reset the distributions of genetic variation in each species and inhibited continual codivergence among pairs of interacting species.


Applied and Environmental Microbiology | 2008

Free-Living Tube Worm Endosymbionts Found at Deep-Sea Vents

Tara L. Harmer; Randi D. Rotjan; Andrea D. Nussbaumer; Monika Bright; Andrew W. Ng; Eric G. DeChaine; Colleen M. Cavanaugh

ABSTRACT Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.


Evolution | 2011

DIVERSITY AND DEMOGRAPHY IN BERINGIA: MULTILOCUS TESTS OF PALEODISTRIBUTION MODELS REVEAL THE COMPLEX HISTORY OF ARCTIC GROUND SQUIRRELS

Kurt E. Galbreath; Joseph A. Cook; Aren A. Eddingsaas; Eric G. DeChaine

To assess effects of historical climate change on northern species, we quantified the population history of the arctic ground squirrel (Spermophilus parryii), an arctic‐adapted rodent that evolved in Beringia and was strongly influenced by climatic oscillations of the Quaternary. Competing hypotheses for the species’ population history were derived from patterns of mitochondrial (mtDNA) structure and a bioclimatic envelope model (BEM). Hypotheses invoked (1) sequential isolation of regional populations beginning with the Arctic, (2) deep isolation only across central Alaska, and (3) widespread panmixia, and were tested using coalescent methods applied to eight nuclear (nDNA) loci. The data rejected strict interpretations of all three hypotheses, but perspectives underlying each encompassed aspects of the species’ history. Concordance between mtDNA and nDNA geographic structure revealed three semi‐independently evolving phylogroups, whereas signatures of gene flow at nDNA loci were consistent with a historical contact between certain populations as inferred by the BEM. Demographic growth was inferred for all regions despite expectations of postglacial habitat contraction for parts of Beringia. Our results highlight the complementary perspectives on species’ histories that multiple lines of evidence provide, and underscore the utility of multilocus data for resolving complex population histories relevant to understanding effects of climate change.


Plant Ecology & Diversity | 2008

A bridge or a barrier? Beringia's influence on the distribution and diversity of tundra plants

Eric G. DeChaine

Background: Evidence strongly suggests that Beringia was a refugium for tundra taxa throughout the Quaternary (the last 2 million years). However, the genetic consequences of the repeated formation and flooding of the Bering Land Bridge remain uncertain. Aims: The goal of this paper was to determine the role that the unique environmental history of Beringia played in the diversification of tundra flora. Methods: I adopted a comparative coalescent approach to test models of divergence for arctic flora within Beringia. The literature was surveyed for phylogeographic studies that sampled broadly across the region and incorporated molecular markers appropriate for coalescent analyses. Of the 13 possible taxa, only two fit these criteria: Saxifraga oppositifolia (Saxifragaceae) and Vaccinium uliginosum (Ericaceae). Observed gene trees were compared with a distribution of trees simulated under neutral coalescence to test models of population divergence. Population models fell within two major categories reflecting the importance of either the Bering Land Bridge or the Bering Sea dispersal barrier on the distribution of genetic diversity in the species. Results: Both species fit ‘bridge’ models, but S. oppositifolia supported a model of eastward migration while V. uliginosum fits a unified Beringia refugium model. The evolutionary implications of these findings are discussed. Conclusions: The limited number of studies emphasises the need for more sequence-based research in the region. This will help resolve the history of the Beringia tundra ecosystem, which has important implications for the diversification of tundra flora, the history of Beringia, and the potential consequences of climate change on the distribution of biological diversity.


Progress in molecular and subcellular biology | 2005

Symbioses of Methanotrophs and Deep-Sea Mussels (Mytilidae: Bathymodiolinae)

Eric G. DeChaine; Colleen M. Cavanaugh

The symbioses between invertebrates and chemosynthetic bacteria allow both host and symbiont to colonize and thrive in otherwise inhospitable deep-sea habitats. Given the global distribution of the bathymodioline symbioses, this association is an excellent model for evaluating co-speciation and evolution of symbioses. Thus far, the methanotroph and chemoautotroph endosymbionts of mussels are tightly clustered within two independent clades of gamma Proteobacteria, respectively. Further physiological and genomic studies will elucidate the ecological and evolutionary roles that these bacterial clades play in the symbiosis and chemosynthetic community. Due to the overall abundance of the methanotrophic symbioses at hydrothermal vents and hydrocarbon seeps, they likely play a significant, but as of yet unquantified, role in the biogeochemical cycling of methane. With this in mind, the search for methanotrophic symbioses should not be restricted to these known deep-sea habitats, but rather should be expanded to include methane-rich coastal marine and freshwater environments inhabited by methanotrophs and bivalves. Our current understanding of the bathymodioline symbioses provides a strong foundation for future explorations into the origin, ecology, and evolution of methanotroph symbioses, which are now becoming possible through a combination of classical and advanced molecular techniques.


PLOS ONE | 2013

On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

Eric G. DeChaine; Stacy A. Anderson; Jennifer M. McNew; Barry M. Wendling

Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim.


PLOS ONE | 2011

Resolving the Evolutionary History of Campanula (Campanulaceae) in Western North America

Barry M. Wendling; Kurt E. Galbreath; Eric G. DeChaine

Recent phylogenetic works have begun to address long-standing questions regarding the systematics of Campanula (Campanulaceae). Yet, aspects of the evolutionary history, particularly in northwestern North America, remain unresolved. Thus, our primary goal in this study was to infer the phylogenetic positions of northwestern Campanula species within the greater Campanuloideae tree. We combined new sequence data from 5 markers (atpB, rbcL, matK, and trnL-F regions of the chloroplast and the nuclear ITS) representing 12 species of Campanula with previously published datasets for worldwide campanuloids, allowing us to include approximately 75% of North American Campanuleae in a phylogenetic analysis of the Campanuloideae. Because all but one of North American Campanula species are nested within a single campanuloid subclade (the Rapunculus clade), we conducted a separate set of analyses focused specifically on this group. Our findings show that i) the campanuloids have colonized North America at least 6 times, 4 of which led to radiations, ii) all but one North American campanuloid are nested within the Rapunculus clade, iii) in northwestern North America, a C. piperi – C. lasiocarpa ancestor gave rise to a monophyletic Cordilleran clade that is sister to a clade containing C. rotundifolia, iv) within the Cordilleran clade, C. parryi var. parryi and C. parryi var. idahoensis exhibit a deep, species-level genetic divergence, and v) C. rotundifolia is genetically diverse across its range and polyphyletic. Potential causes of diversification and endemism in northwestern North America are discussed.


PLOS ONE | 2013

Deep Genetic Divergence Between Disjunct Refugia in the Arctic-Alpine King's Crown, Rhodiola integrifolia (Crassulaceae)

Eric G. DeChaine; Brenna R. Forester; Hanno Schaefer; Charles C. Davis

Despite the strength of climatic variability at high latitudes and upper elevations, we still do not fully understand how plants in North America that are distributed between Arctic and alpine areas responded to the environmental changes of the Quaternary. To address this question, we set out to resolve the evolutionary history of the King’s Crown, Rhodiola integrifolia using multi-locus population genetic and phylogenetic analyses in combination with ecological niche modeling. Our population genetic analyses of multiple anonymous nuclear loci revealed two major clades within R. integrifolia that diverged from each other ~ 700 kya: one occurring in Beringia to the north (including members of subspecies leedyi and part of subspecies integrifolia), and the other restricted to the Southern Rocky Mountain refugium in the south (including individuals of subspecies neomexicana and part of subspecies integrifolia). Ecological niche models corroborate our hypothesized locations of refugial areas inferred from our phylogeographic analyses and revealed some environmental differences between the regions inhabited by its two subclades. Our study underscores the role of geographic isolation in promoting genetic divergence and the evolution of endemic subspecies in R. integrifolia. Furthermore, our phylogenetic analyses of the plastid spacer region trnL-F demonstrate that among the native North American species, R. integrifolia and R. rhodantha are more closely related to one another than either is to R. rosea. An understanding of these historic processes lies at the heart of making informed management decisions regarding this and other Arctic-alpine species of concern in this increasingly threatened biome.


Ecology and Evolution | 2018

Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records for spatial analysis

Trevor D.S. Bloom; Aquila Flower; Eric G. DeChaine

Abstract Species Distribution Models (SDMs) are widely used to understand environmental controls on species’ ranges and to forecast species range shifts in response to climatic changes. The quality of input data is crucial determinant of the models accuracy. While museum records can be useful sources of presence data for many species, they do not always include accurate geographic coordinates. Therefore, actual locations must be verified through the process of georeferencing. We present a practical, standardized manual georeferencing method (the Spatial Analysis Georeferencing Accuracy (SAGA) protocol) to classify the spatial resolution of museum records specifically for building improved SDMs. We used the high‐elevation plant Saxifraga austromontana Wiegand (Saxifragaceae) as a case study to test the effect of using this protocol when developing an SDM. In MAXENT, we generated and compared SDMs using a comprehensive occurrence dataset that had undergone three different levels of georeferencing: (1) trained using all publicly available herbarium records of the species, minus outliers (2) trained using herbarium records claimed to be previously georeferenced, and (3) trained using herbarium records that we have manually georeferenced to a ≤ 1‐km resolution using the SAGA protocol. Model predictions of suitable habitat for S. austromontana differed greatly depending on georeferencing level. The SDMs fitted with presence locations georeferenced using SAGA outperformed all others. Differences among models were exacerbated for future distribution predictions. Under rapid climate change, accurately forecasting the response of species becomes increasingly important. Failure to georeference location data and cull inaccurate samples leads to erroneous model output, limiting the utility of spatial analyses. We present a simple, standardized georeferencing method to be adopted by curators, ecologists, and modelers to improve the geographic accuracy of museum records and SDM predictions.

Collaboration


Dive into the Eric G. DeChaine's collaboration.

Top Co-Authors

Avatar

Andrew P. Martin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry M. Wendling

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Bunn

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

Aquila Flower

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

Kurt E. Galbreath

Northern Michigan University

View shared research outputs
Top Co-Authors

Avatar

Trevor D.S. Bloom

Western Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge