Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric G. Lima is active.

Publication


Featured researches published by Eric G. Lima.


Annals of Biomedical Engineering | 2004

A Paradigm for Functional Tissue Engineering of Articular Cartilage via Applied Physiologic Deformational Loading

Clark T. Hung; Robert L. Mauck; Christopher C.-B. Wang; Eric G. Lima; Gerard A. Ateshian

Deformational loading represents a primary component of the chondrocyte physical environment in vivo. This review summarizes our experience with physiologic deformational loading of chondrocyte-seeded agarose hydrogels to promote development of cartilage constructs having mechanical properties matching that of the parent calf tissue, which has a Youngs modulus EY = 277 kPa and unconfined dynamic modulus at 1 Hz G*=7 MPa. Over an 8-week culture period, cartilage-like properties have been achieved for 60 × 106 cells/ml seeding density agarose constructs, with EY = 186 kPa, G*=1.64 MPa. For these constructs, the GAG content reached 1.74% ww and collagen content 2.64% ww compared to 2.4% ww and 21.5% ww for the parent tissue, respectively. Issues regarding the deformational loading protocol, cell-seeding density, nutrient supply, growth factor addition, and construct mechanical characterization are discussed. In anticipation of cartilage repair studies, we also describe early efforts to engineer cylindrical and anatomically shaped bilayered constructs of agarose hydrogel and bone (i.e., osteochondral constructs). The presence of a bony substrate may facilitate integration upon implantation. These efforts will provide an underlying framework from which a functional tissue-engineering approach, as described by Butler and coworkers (2000), may be applied to general cell-scaffold systems adopted for cartilage tissue engineering.


Journal of Biomechanics | 2003

Anatomically shaped osteochondral constructs for articular cartilage repair

Clark T. Hung; Eric G. Lima; Robert L. Mauck; Erica Taki; Michelle A. LeRoux; Helen H. Lu; Robert G. Stark; X. Edward Guo; Gerard A. Ateshian

Few successful treatment modalities exist for surface-wide, full-thickness lesions of articular cartilage. Functional tissue engineering offers a great potential for the clinical management of such lesions. Our long-term hypothesis is that anatomically shaped tissue constructs of entire articular layers can be engineered in vitro on a bony substrate, for subsequent implantation. To determine the feasibility, this study investigated the development of bilayered scaffolds of chondrocyte-seeded agarose on natural trabecular bone. In a series of three experiments, bovine chondrocytes were seeded in (1) cylindrical bilayered constructs of agarose and bovine trabecular bone, 0.53 cm2 in surface area and 3.2 mm thick, and were cultured for up to 6 weeks; (2) chondrocyte-seeded anatomically shaped agarose constructs reproducing the human patellar articular layer (area=11.7 cm2, mean thickness=3.4 mm), cultured for up to 6 weeks; and (3) chondrocyte-seeded anatomically shaped agarose constructs of the patella (same as above) integrated into a corresponding anatomically shaped trabecular bone substrate, cultured for up to 2 weeks. Articular layer geometry, previously acquired from human cadaver joints, was used in conjunction with computer-aided design and manufacturing technology to create these anatomically accurate molds. In all experiments, chondrocytes remained viable over the entire culture period, with the agarose maintaining its shape while remaining firmly attached to the underlying bony substrate (when present). With culture time, the constructs exhibited positive type II collagen staining as well as increased matrix elaboration (Safranin O staining for glycosaminoglycans) and material properties (Youngs modulus and aggregate modulus). Despite the use of relatively large agarose constructs partially integrated with trabecular bone, no adverse diffusion limitation effects were observed. Anatomically shaped constructs on a bony substrate may represent a new paradigm in the design of a functional articular cartilage tissue replacement.


Osteoarthritis and Cartilage | 2009

Influence of decreasing nutrient path length on the development of engineered cartilage

Liming Bian; S.L. Angione; Kenneth W. Ng; Eric G. Lima; David Y. Williams; D.Q. Mao; Gerard A. Ateshian; Clark T. Hung

OBJECTIVE Chondrocyte-seeded agarose constructs of 4mm diameter (2.34 mm thickness) develop spatially inhomogeneous material properties with stiffer outer edges and a softer central core suggesting nutrient diffusion limitations to the central construct region [Guilak F, Sah RL, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, Eds. Basic Orthopaedic Biomechanics, Philadelphia 1997;179-207.]. The effects of reducing construct thickness and creating channels running through the depth of the thick constructs were examined. METHODS In Study 1, the properties of engineered cartilage of 0.78 mm (thin) or 2.34 mm (thick) thickness were compared. In Study 2, a single nutrient channel (1 mm diameter) was created in the middle of each thick construct. In Study 3, the effects of channels on larger 10 mm diameter, thick constructs were examined. RESULTS Thin constructs developed superior mechanical and biochemical properties than thick constructs. The channeled constructs developed significantly higher mechanical properties vs control channel-free constructs while exhibiting similar glycosaminoglycan (GAG) and collagen content. Collagen staining suggested that channels resulted in a more uniform fibrillar network. Improvements in constructs of 10 mm diameter were similarly observed. CONCLUSIONS This study demonstrated that more homogeneous tissue-engineered cartilage constructs with improved mechanical properties can be achieved by reducing their thickness or incorporating macroscopic nutrient channels. Our data further suggests that these macroscopic channels remain open long enough to promote this enhanced tissue development while exhibiting the potential to refill with cell elaborated matrix with additional culture time. Together with reports that <3 mm defects in cartilage heal in vivo and that irregular holes are associated with clinically used osteochondral graft procedures, we anticipate that a strategy of incorporating macroscopic channels may aid the development of clinically relevant engineered cartilage with functional properties.


Tissue Engineering Part A | 2008

Differences in interleukin-1 response between engineered and native cartilage.

Eric G. Lima; Andrea R. Tan; Timon Tai; Liming Bian; Aaron M. Stoker; Gerard A. Ateshian; James L. Cook; Clark T. Hung

Unlike native cartilage explants that are used in autologous tissue transfer procedures, engineered cartilage constructs are typically highly fragile when first formed and must rely on cellular activity to develop over time. However, inflammatory cytokines such as interleukin-1alpha (IL-1alpha) are often present in target joints and may interfere with this development process. Herein we examine to what extent nascent engineered tissue is susceptible to chemical perturbations by IL-1alpha (10 ng/mL), especially when compared to native explants, and whether in vitro preconditioning may promote sufficient integrity to lessen this impact. The studies were carried out using a chemically defined medium supplemented with or without the antiinflammatory steroid dexamethasone. We find that engineered tissue (bovine chondrocytes in agarose hydrogel) at early time points (days 0 and 14) does not grow when exposed to the cytokine even temporarily, but both bovine explants and more developed engineered tissue (day 28) are able to withstand the same exposure without degradation of properties. We argue therefore that some in vitro preconditioning may be necessary to promote both sufficient mechanical integrity and the chemical fortitude without which insufficiently developed engineered constructs will not survive the harsh mechanochemical environment within the joint.


Journal of Biomedical Materials Research Part A | 2009

Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement.

Eric G. Lima; Andrea R. Tan; Timon Tai; Kacey G. Marra; Alicia J. DeFail; Gerard A. Ateshian; Clark T. Hung

Genipin is a naturally-derived biocompatible cross-linking agent commonly used to generate three dimensional tissue-engineered scaffolds or to fix biologically derived scaffolds prior to implantation. Here we propose a novel use for genipin as a long-term culture medium supplement to promote cross-linking of de novo cell products that are produced in engineered cartilage. We hypothesize that the application of genipin will stabilize the extracellular matrix components and increase the mechanical properties of developing engineered cartilage. Chondrocytes encapsulated in agarose hydrogel (a neutrally charged polysaccharide scaffold that is unaffected by genipin cross-linking) were cultured in a chemically-defined growth medium that was supplemented with varying concentrations of genipin (22 microM, 220 microM, 2200 microM) for various durations (continuous or intermittent). Tissues developed significantly higher mechanical properties (+28% dynamic modulus and +20% Youngs modulus) by day 42 with genipin treatment compared to untreated controls. These increases were not immediate, but presented over culture time after genipin treatment. The genipin treated groups were also more resistant to cytokine-induced degradation with interleukin-1alpha; maintaining an E(Y) (+218%), G* (+390%) and glycosaminoglycan (GAG) content (+477%) over genipin-untreated constructs subjected to interleukin. We hypothesize two mechanisms through which the physical enhancement of tissue properties may be fostered: (1) by cross-link mediated reorganization and enhanced retention of cell-elaborated extracellular matrix components, and (2) through reduction of the loss of extracellular matrix components by increasing their resilience to catabolic degradation. These studies demonstrate a potential use of genipin as a medium supplement to develop enhanced engineered cartilage.


Journal of Biomechanics | 2008

Mechanical and biochemical characterization of cartilage explants in serum-free culture.

Liming Bian; Eric G. Lima; S.L. Angione; Kenneth W. Ng; David Y. Williams; Duo Xu; Aaron M. Stoker; James L. Cook; Gerard A. Ateshian; Clark T. Hung

Allografts of articular cartilage are both used clinically for tissue-transplantation procedures and experimentally as model systems to study the physiological behavior of chondrocytes in their native extracellular matrix. Long-term maintenance of allograft tissue is challenging. Chemical mediators in poorly defined culture media can stimulate cells to quickly degrade their surrounding extracellular matrix. This is particularly true of juvenile cartilage which is generally more responsive to chemical stimuli than mature tissue. By carefully modulating the culture media, however, it may be possible to preserve allograft tissue over the long-term while maintaining its original mechanical and biochemical properties. In this study juvenile bovine cartilage explants (both chondral and osteochondral) were cultured in both chemically defined medium and serum-supplemented medium for up to 6 weeks. The mechanical properties and biochemical content of explants cultured in chemically defined medium were enhanced after 2 weeks in culture and thereafter remained stable with no loss of cell viability. In contrast, the mechanical properties of explants in serum-supplemented medium were degraded by ( approximately 70%) along with a concurrent loss of biochemical content (30-40% GAG). These results suggest that long-term maintenance of allografts can be extended significantly by the use of a chemically defined medium.


Biophysical Journal | 2009

Effect of Dynamic Loading on the Transport of Solutes into Agarose Hydrogels

Nadeen O. Chahine; Michael B. Albro; Eric G. Lima; Victoria I. Wei; Christopher R. Dubois; Clark T. Hung; Gerard A. Ateshian

In functional tissue engineering, the application of dynamic loading has been shown to improve the mechanical properties of chondrocyte-seeded agarose hydrogels relative to unloaded free swelling controls. The goal of this study is to determine the effect of dynamic loading on the transport of nutrients in tissue-engineered constructs. To eliminate confounding effects, such as nutrient consumption in cell-laden disks, this study examines the response of solute transport due to loading using a model system of acellular agarose disks and dextran in phosphate-buffered saline (3 and 70 kDa). An examination of the passive diffusion response of dextran in agarose confirms the applicability of Ficks law of diffusion in describing the behavior of dextran. Under static loading, the application of compressive strain decreased the total interstitial volume available for the 70 kDa dextran, compared to free swelling. Dynamic loading significantly enhanced the rate of solute uptake into agarose disks, relative to static loading. Moreover, the steady-state concentration under dynamic loading was found to be significantly greater than under static loading, for larger-molecular-mass dextran (70 kDa). This experimental finding confirms recent theoretical predictions that mechanical pumping of a porous tissue may actively transport solutes into the disk against their concentration gradient. The results of this study support the hypothesis that the application of dynamic loading in the presence of growth factors of large molecular weight may result in both a mechanically and chemically stimulating environment for tissue growth.


Biomaterials | 2008

The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

Eric G. Lima; Pen-hsiu Grace Chao; Gerard A. Ateshian; B. Sonny Bal; James L. Cook; Gordana Vunjak-Novakovic; Clark T. Hung

In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Youngs modulus (E(Y)) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (E(Y)=87+/-12 kPa, GAG=1.9+/-0.8%ww) compared to the gel-alone group (E(Y)=642+/-97 kPa, GAG=4.6+/-1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell-bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (E(Y)=730+/-65 kPa, GAG=5.2+/-0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts.


Journal of Biomechanics | 2013

Tissue-engineered articular cartilage exhibits tension–compression nonlinearity reminiscent of the native cartilage

Terri-Ann N. Kelly; Brendan L. Roach; Zachary Weidner; Charles R. Mackenzie-Smith; Grace D. O'Connell; Eric G. Lima; Aaron M. Stoker; James L. Cook; Gerard A. Ateshian; Clark T. Hung

The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties.


Journal of Biomechanics | 2008

Physiologic deformational loading does not counteract the catabolic effects of interleukin-1 in long-term culture of chondrocyte-seeded agarose constructs

Eric G. Lima; Andrea R. Tan; Timon Tai; Liming Bian; Gerard A. Ateshian; James L. Cook; Clark T. Hung

An interplay of mechanical and chemical factors is integral to cartilage maintenance and/or degeneration. Interleukin-1 (IL-1) is a pro-inflammatory cytokine that is present at elevated concentrations in osteoarthritic joints and initiates the rapid degradation of cartilage when cultured in vitro. Several short-term studies have suggested that applied dynamic deformational loading may have a protective effect against the catabolic actions of IL-1. In the current study, we examine whether the long-term (42 days) application of dynamic deformational loading on chondrocyte-seeded agarose constructs can mitigate these catabolic effects. Three studies were carried out using two IL-1 isoforms (IL-1alpha and IL-1beta) in chemically defined medium supplemented with a broad range of cytokine concentrations and durations. Physiologic loading was unable to counteract the long-term catabolic effects of IL-1 under any of the conditions tested, and in some cases led to further degeneration over unloaded controls.

Collaboration


Dive into the Eric G. Lima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liming Bian

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Borden

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge