Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Giraud is active.

Publication


Featured researches published by Eric Giraud.


Science | 2007

Legumes symbioses : Absence of Nod genes in photosynthetic bradyrhizobia

Eric Giraud; Lionel Moulin; David Vallenet; Valérie Barbe; Eddie Cytryn; Jean Christophe Avarre; Marianne Jaubert; Damien Simon; Fabienne Cartieaux; Yves Prin; Gilles Béna; Laura Hannibal; Joël Fardoux; Mila Kojadinovic; Laurie Vuillet; Aurélie Lajus; Stéphane Cruveiller; Zoé Rouy; Sophie Mangenot; Béatrice Segurens; Carole Dossat; William L. Franck; Woo Suk Chang; Elizabeth Saunders; David Bruce; Paul G. Richardson; Philippe Normand; Bernard Dreyfus; Gary Stacey; David W. Emerich

Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.


Trends in Microbiology | 2009

Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?

Catherine Masson-Boivin; Eric Giraud; Xavier Perret; Jacques Batut

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.


Applied and Environmental Microbiology | 2000

Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata

Clémence Chaintreuil; Eric Giraud; Yves Prin; Jean Lorquin; Amadou Bâ; Monique Gillis; Philippe de Lajudie; Bernard Dreyfus

ABSTRACT We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains ofBradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulatacould significantly enhance cultivated rice production.


Nature | 2002

Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria

Eric Giraud; Joël Fardoux; Nicolas Fourrier; Laure Hannibal; Bernard Genty; Pierre Bouyer; Bernard Dreyfus; André Verméglio

Plants use a set of light sensors to control their growth and development in response to changes in ambient light. In particular, phytochromes exert their regulatory activity by switching between a biologically inactive red-light-absorbing form (Pr) and an active far-red-light absorbing form (Pfr). Recently, biochemical and genetic studies have demonstrated the occurrence of phytochrome-like proteins in photosynthetic and non-photosynthetic bacteria—but little is known about their functions. Here we report the discovery of a bacteriophytochrome located downstream from the photosynthesis gene cluster in a Bradyrhizobium strain symbiont of Aeschynomene. The synthesis of the complete photosynthetic apparatus is totally under the control of this bacteriophytochrome. A similar behaviour is observed for the closely related species Rhodopseudomonas palustris, but not for the more distant anoxygenic photosynthetic bacteria of the genus Rhodobacter, Rubrivivax or Rhodospirillum. Unlike other (bacterio)phytochromes, the carboxy-terminal domain of this bacteriophytochrome contains no histidine kinase features. This suggests a light signalling pathway involving direct protein–protein interaction with no phosphorelay cascade. This specific mechanism of regulation may represent an important ecological adaptation to optimize the plant–bacteria interaction.


Journal of Bacteriology | 2000

Isolation and Characterization of Canthaxanthin Biosynthesis Genes from the Photosynthetic Bacterium Bradyrhizobium sp. Strain ORS278

Laure Hannibal; Jean Lorquin; Nicolas Angles D'Ortoli; Nelly Garcia; Clémence Chaintreuil; Catherine Masson-Boivin; Bernard Dreyfus; Eric Giraud

A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies.


Molecular Plant-microbe Interactions | 2011

Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. Strain ORS285 : The nod-dependent versus the nod-independent symbiotic interaction

Katia Bonaldi; Daniel Gargani; Yves Prin; Joël Fardoux; Djamel Gully; Nico Nouwen; Sofie Goormachtig; Eric Giraud

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


Nature Communications | 2014

Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes

Alba Silipo; Giuseppe Vitiello; Djamel Gully; Luisa Sturiale; Clémence Chaintreuil; Joël Fardoux; Daniel Gargani; Hae In Lee; Gargi Kulkarni; Nicolas Busset; Roberta Marchetti; Angelo Palmigiano; Herman Moll; Regina Engel; Rosa Lanzetta; Luigi Paduano; Michelangelo Parrilli; Woo Suk Chang; Otto Holst; Dianne K. Newman; Domenico Garozzo; Gerardino D'Errico; Eric Giraud; Antonio Molinaro

Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.


The ISME Journal | 2016

Rhizobium|[ndash]|legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS

Shin Okazaki; Panlada Tittabutr; Albin Teulet; Julien Thouin; Joël Fardoux; Clémence Chaintreuil; Djamel Gully; Jean François Arrighi; Noriyuki Furuta; Hiroki Miwa; Michiko Yasuda; Nico Nouwen; Neung Teaumroong; Eric Giraud

The occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NF-independent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all non-photosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism.


Plant Physiology | 2015

Convergent Evolution of Endosymbiont Differentiation in Dalbergioid and Inverted Repeat-Lacking Clade Legumes Mediated by Nodule-Specific Cysteine-Rich Peptides

Pierre Czernic; Djamel Gully; Fabienne Cartieaux; Lionel Moulin; Ibtissem Guefrachi; Delphine Patrel; Olivier Pierre; Joël Fardoux; Clémence Chaintreuil; Phuong Nguyen; Frédéric Gressent; Corinne Da Silva; Julie Poulain; Patrick Wincker; Valérie Rofidal; Sonia Hem; Quentin Barrière; Jean-François Arrighi; Peter Mergaert; Eric Giraud

Several species from an ancient legume lineage independently evolved a novel class of cysteine-rich peptides to impose a differentiation process on their endosymbionts. Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.


Molecular Plant-microbe Interactions | 2010

Large-Scale Transposon Mutagenesis of Photosynthetic Bradyrhizobium Sp. Strain ORS278 Reveals New Genetic Loci Putatively Important for Nod-Independent Symbiosis with Aeschynomene indica

Katia Bonaldi; Benjamin Gourion; Joël Fardoux; Laure Hannibal; Fabienne Cartieaux; Marc Boursot; David Vallenet; Clémence Chaintreuil; Yves Prin; Nico Nouwen; Eric Giraud

Photosynthetic Bradyrhizobium strains possess the unusual ability to form nitrogen-fixing nodules on a specific group of legumes in the absence of Nod factors. To obtain insight into the bacterial genes involved in this Nod-independent symbiosis, we screened 15,648 Tn5 mutants of Bradyrhizobium sp. strain ORS278 for clones affected in root symbiosis with Aeschynomene indica. From the 268 isolated mutants, 120 mutants were altered in nodule development (Ndv(-)) and 148 mutants were found to be deficient in nitrogen fixation (Fix(-)). More than 50% of the Ndv(-) mutants were found to be altered in purine biosynthesis, strengthening the previous hypothesis of a symbiotic role of a bacterial purine derivative during the Nod-independent symbiosis. The other Ndv(-) mutants were auxotrophic for pyrimidines and amino acids (leucine, glutamate, and lysine) or impaired in genes encoding proteins of unknown function. The Fix(-) mutants were found to be affected in a wide variety of cellular processes, including both novel (n = 56) and previously identified (n = 31) genes important in symbiosis. Among the novel genes identified, several were involved in the Calvin cycle, suggesting that CO(2) fixation could play an important role during this symbiosis.

Collaboration


Dive into the Eric Giraud's collaboration.

Top Co-Authors

Avatar

Joël Fardoux

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Bernard Dreyfus

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alba Silipo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Molinaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge