Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Gouré is active.

Publication


Featured researches published by Eric Gouré.


Angewandte Chemie | 2014

A Diiron(III,IV) Imido Species Very Active in Nitrene‐Transfer Reactions

Eric Gouré; Frédéric Avenier; Patrick Dubourdeaux; Olivier Sénèque; Florian Albrieux; Colette Lebrun; Martin Clémancey; Pascale Maldivi; Jean-Marc Latour

Metal-catalyzed nitrene transfer reactions arouse intense interest as clean and efficient procedures for amine synthesis. Efficient Rh- and Ru-based catalysts exist but Fe alternatives are actively pursued. However, reactive iron imido species can be very short-lived and getting evidence of their occurrence in efficient nitrene-transfer reactions is an important challenge. We recently reported that a diiron(III,II) complex is a very efficient nitrene-transfer catalyst to various substrates. We describe herein how, by combining desorption electrospray ionization mass spectrometry, quantitative chemical quench experiments, and DFT calculations, we obtained conclusive evidence for the occurrence of an {Fe(III) Fe(IV) NTosyl} intermediate that is very active in H-abstraction and nitrene-transfer reactions. DFT calculations revealed a strong radical character of the tosyl nitrogen atom in very low-lying electronic configurations of the Fe(IV) ion which are likely to confer its high reactivity.


Inorganic Chemistry | 2015

Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

Vlad Martin-Diaconescu; Marcello Gennari; Bertrand Gerey; Emily Y. Tsui; Jacob S. Kanady; Rosalie Tran; Jacques Pécaut; Dimitrios Maganas; Vera Krewald; Eric Gouré; Carole Duboc; Junko Yano; Theodor Agapie; Marie-Noëlle Collomb; Serena DeBeer

Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.


Inorganic Chemistry | 2012

Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: a DFT proposed mechanism.

Xavier Solans-Monfort; Catherine Chow; Eric Gouré; Yasemin Kaya; Jean-Marie Basset; Mostafa Taoufik; Elsje Alessandra Quadrelli; Odile Eisenstein

DFT(B3PW91) calculations have been carried out to propose a pathway for the N(2) cleavage by H(2) in the presence of silica-supported tantalum hydride complexes [(≡SiO)(2)TaH(x)] that forms [(≡SiO)(2)Ta(NH)(NH(2))] (Science 2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)(2)SiO](2)}TaH(1) and {μ-O[(HO)(2)SiO](2)}TaH(3), labelled as (≡SiO)(2)TaH(x) (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)(2)TaH(η(2)-N(2)) and (≡SiO)(2)TaH(η(2)-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H(2), increase the electrophilicity of the resulting ligand (diazenido, N(2)H(-), and hydrazido, NHNH(2)(-), respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)(2)TaH(η(2)-HNNH), the H(2) molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO)(2)TaH(NH(2))(2), suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H(2) is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)(2)TaH(η(2)-HNNH)] from its ν(N-H) stretching frequency of 3400 cm(-1), to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding.


Inorganic Chemistry | 2011

Reversible (de)protonation-induced valence inversion in mixed-valent diiron(II,III) complexes.

Eric Gouré; Grégory Thiabaud; Michaël Carboni; Nathalie Gon; Patrick Dubourdeaux; Ricardo Garcia-Serres; Martin Clémancey; Jean-Louis Oddou; Adeline Y. Robin; Lilian Jacquamet; Lionel Dubois; Geneviève Blondin; Jean-Marc Latour

The coupling of electron and proton transfers is currently under intense scrutiny. This Communication reports a new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex. The triply-bridged complex [Fe(III)(μ-OPh)(μ(2)-mpdp)Fe(II)(NH(2)Bn)] (1; mpdp(2-) = m-phenylenedipropionate) bearing a terminal aminobenzyl ligand can be reversibly deprotonated to the anilinate complex 2 whose core [Fe(II)(μ-OPh)(μ(2)-mpdp)Fe(III)(NHBn)] features an inversion of the iron valences. This observation is supported by a combination of UV-visible, (1)H NMR, and Mössbauer spectroscopic studies.


Inorganic Chemistry | 2016

Intramolecular Electron Transfers Thwart Bistability in a Pentanuclear Iron Complex

Eric Gouré; Bertrand Gerey; Martin Clémancey; Jacques Pécaut; Florian Molton; Jean-Marc Latour; Geneviève Blondin; Marie-Noëlle Collomb

With the intention to investigate the redox properties of polynuclear complexes as previously reported for the pentamanganese complex [{Mn(II)(μ-bpp)3}2Mn(III)Mn(II)2(μ3-O)](3+) (2(3+)), we focused on the analogous pentairon complex that was previously isolated as all-ferrous. As Masaoka and co-workers recently published, aerobic synthesis leads to the [{Fe(II)(μ-bpp)3}2Fe(III)Fe(II)2(μ3-O)](3+) complex (1(3+)). This species exhibits in acetonitrile solution four reversible one-electron oxidation waves. Accordingly, the three oxidized species 1(4+), 1(5+), and 1(6+) with a 3Fe(II)2Fe(III), 2Fe(II)3Fe(III), and 1Fe(II)4Fe(III) composition, respectively, were generated by bulk electrolysis and isolated. Mössbauer spectroscopy allowed us to determine the spin states of all the iron ions and to unambiguously locate the sites of the successive oxidations. They all occur in the μ3-oxo core except for the 1(4+) to 1(5+) process that presents a striking electronic rearrangement, with both metals in axial position being oxidized while the core is reduced to the [Fe(III)Fe(II)2(μ3-O)](5+) oxidation level. This strongly differs from the redox behavior of the Mn5 system. The origin of this electronic switch is discussed.


Chemistry: A European Journal | 2015

Phosphoester Hydrolysis: The Incoming Substrate Turns the Bridging Hydroxido Nucleophile into a Terminal One

Eric Gouré; Michaël Carboni; Angélique Troussier; Colette Lebrun; Jacques Pécaut; Jean‐François Jacquot; Patrick Dubourdeaux; Martin Clémancey; Geneviève Blondin; Jean-Marc Latour

Identifying the active nucleophile in hydrolysis reactions catalyzed by binuclear hydrolases is a recurrent problem and a matter of intense debate. We report on the phosphate ester hydrolysis by a Fe(III)Fe(II) complex of a binucleating ligand. This complex presents activities in the range of those observed for similar biomimetic compounds in the literature. The specific electronic properties of the Fe(III)Fe(II) complex allowed us to use (1)H NMR and Mössbauer spectroscopies to investigate the nature of the various species present in the solution in the pH range of 5-10. Both techniques showed that the hydrolysis activity is associated to a μ-hydroxido Fe(III)Fe(II) species. Further (1)H NMR experiments show that binding of anions or the substrate changes this bonding mode suggesting that a terminal hydroxide is the likely nucleophile in these hydrolysis reactions. This view is further supported by the structure determination of the hydrolysis product.


Angewandte Chemie | 2017

Redox Self‐Adaptation of a Nitrene Transfer Catalyst to the Substrate Needs

Eric Gouré; Dhurairajan Senthilnathan; Guillaume Coin; Florian Albrieux; Frédéric Avenier; Patrick Dubourdeaux; Colette Lebrun; Pascale Maldivi; Jean-Marc Latour

The development of iron catalysts for carbon-heteroatom bond formation, which has attracted strong interest in the context of green chemistry and nitrene transfer, has emerged as the most promising way to versatile amine synthetic processes. A diiron system was previously developed that proved efficient in catalytic sulfimidations and aziridinations thanks to an FeIII FeIV active species. To deal with more demanding benzylic and aliphatic substrates, the catalyst was found to activate itself to a FeIII FeIV L. active species able to catalyze aliphatic amination. Extensive DFT calculations show that this activation event drastically enhances the electron affinity of the active species to match the substrates requirements. Overall this process consists in a redox self-adaptation of the catalyst to the substrate needs.


Inorganic Chemistry | 2015

Hydrazine N–N Bond Cleavage over Silica-Supported Tantalum-Hydrides

Hong-Peng Jia; Eric Gouré; Xavier Solans-Monfort; Jessica Llop Castelbou; Catherine Chow; Mostafa Taoufik; Odile Eisenstein; Elsje Alessandra Quadrelli

Hydrazine reacts with silica-supported tantalum-hydrides [(≡SiO)2TaHx] (x = 1, 3), 1, under mild conditions (100 °C). The IR in situ monitoring of the reaction with N2H4 or (15)N2H4, and the solid-state MAS NMR spectra of the fully (15)N labeled compounds (CP (15)N, (1)H-(15)N HETCOR, (1)H-(1)H double-quantum, and (1)H-(1)H triple-quantum spectra) were used to identify stable intermediates and products. DFT calculations were used for determining the reaction pathway and calculating the (15)N and (1)H NMR chemical shifts. Combining the experimental and computational studies led to the following results. At room temperature, only hydrazine adducts, 1-N2H4, are formed. Upon heating at 100 °C, the hydrazine adducts are converted to several species among which [(≡SiO)2Ta(═NH)(NH2)], 2, [(≡SiO)2TaH(NH2)2], 3, and [(≡SiO)2TaH2(NH-NH2)], 4, were identified. The final product 2 is also formed in the reaction of N2 with the same silica-supported tantalum-hydride complexes, and the species identified as 3 and 4 had been previously suggested by DFT studies as intermediates on the reaction pathway for N-N cleavage in N2. The present computational studies (cluster models with M06 functional complemented by selected calculations with periodic calculations) show that 2 is formed via 3 and 4, with either N2 or N2H4. This strengthens the previous proposal of the existence of 3 and 4 as intermediates in the reaction of N2 with the tantalum-hydrides. However, the reaction of N2 does not imply the formation of N2H4 or its hydrazido monoanionic or dianionic ligand as an intermediate. For this reason, this study informs both on the similarities and differences of the reaction pathways involving N2 and N2H4 with tantalum-hydrides.


ACS Chemical Biology | 2016

Reaction of PerR with Molecular Oxygen May Assist H2O2 Sensing in Anaerobes

Ramakrishnan Sethu; Eric Gouré; Luca Signor; Christelle Caux-Thang; Martin Clémancey; Victor Duarte; Jean-Marc Latour

PerR is the peroxide resistance regulator found in several pathogenic bacteria and governs their resistance to peroxide stress by inducing enzymes that destroy peroxides. However, it has recently been implicated as a key component of the aerotolerance in several facultative or strict anaerobes, including the highly pathogenic Staphylococcus aureus. By combining (18)O labeling studies to ESI- and MALDI-TOF MS detection and EMSA experiments, we demonstrate that the active form of PerR reacts with dioxygen, which leads ultimately to disruption of the PerR/DNA complex and is thus physiologically meaningful. Moreover, we show that the presence of O2 assists PerR sensing of H2O2, another feature likely to be important for anaerobic organisms. These results allow one to envisage different scenarios for the response of anaerobes to air exposure.


Inorganic Chemistry | 2014

Cis/Trans Isomerizations in Diiron Complexes Involving Aniline or Anilide Ligands

Eric Gouré; Michaël Carboni; Patrick Dubourdeaux; Martin Clémancey; Balasubramanian R; Colette Lebrun; Bayle Pa; Pascale Maldivi; Geneviève Blondin; Jean-Marc Latour

We have recently reported a deprotonation-induced valence inversion within a phenoxido-bridged mixed-valent diiron(II,III) complex. The initial aniline coordinated to the Fe(II) site reacts with triethylamine, and the resulting complex contains an anilide ligand coordinated to the Fe(III) ion. The behavior of these complexes in acetonitrile is indeed more intricate. Owing to the very distinctive spectroscopic signatures of the complexes, the conjunction of NMR, Mössbauer, and UV-visible absorption spectroscopies allows one to evidence two isomerization reactions, one involving the aniline linked to Fe(II) and the other the anilide on Fe(III). Theoretical calculations sustain this conclusion. Aniline in the cis position versus the bridging phenoxide is shown to be the most stable isomer while the anilide trans to the phenoxido bridge is favored. The trans isomer of the aniline complex is more acidic than the cis one by 1 pKa unit. Isomerization of the anilide complex is 10 times faster than the analogous isomerization of the aniline complex. Both reactions are proposed to proceed through a unique mechanism. This is the first time that such isomerization reactions are evidenced in dinuclear complexes.

Collaboration


Dive into the Eric Gouré's collaboration.

Top Co-Authors

Avatar

Jean-Marc Latour

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jacques Pécaut

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martin Clémancey

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Dubourdeaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Colette Lebrun

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marie-Noëlle Collomb

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bertrand Gerey

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michaël Carboni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mostafa Taoufik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascale Maldivi

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge