Eric H. Hill
University of New Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric H. Hill.
Nature Materials | 2016
Gustavo Bodelón; Verónica Montes-García; Vanesa López-Puente; Eric H. Hill; Cyrille Hamon; Marta N. Sanz-Ortiz; Sergio Rodal-Cedeira; Celina Costas; Sirin Celiksoy; Ignacio Pérez-Juste; Leonardo Scarabelli; Andrea La Porta; Jorge Pérez-Juste; Isabel Pastoriza-Santos; Luis M. Liz-Marzán
Most bacteria in nature exist as biofilms, which support intercellular signaling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. Because QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in-situ, label-free detection of a QS signaling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.
Langmuir | 2012
Eric H. Hill; Kelly Stratton; David G. Whitten; Deborah G. Evans
A novel class of phenylene ethynylene polyelectrolyte oligomers (OPEs) has been found to be effective biocidal agents against a variety of pathogens. The mechanism of attack is not yet fully understood. Recent studies have shown that OPEs cause catastrophic damage to large unilamellar vesicles. This study uses classical molecular dynamics (MD) simulations to understand how OPEs interact with model lipid bilayers. All-atom molecular dynamics simulations show that aggregates of OPEs inserted into the membrane cause significant structural damage and create a channel, or pore, that allows significant leakage of water through the membrane on the 0.1 μs time scale.
ACS Applied Materials & Interfaces | 2015
Anand Parthasarathy; Harry C. Pappas; Eric H. Hill; Yun Huang; David G. Whitten; Kirk S. Schanze
This article reports an investigation of the photophysical properties and the light- and dark-biocidal activity of two poly(phenyleneethynylene) (PPE)-based conjugated polyelectrolytes (CPEs) bearing cationic imidazolium solubilizing groups. The two polymers feature the same PPE-type backbone, but they differ in the frequency of imidazoliums on the chains: PIM-4 features two imidazolium units on every phenylene repeat, whereas PIM-2 contains two imidazolium units on every other phenylene unit. Both polymers are very soluble in water and polar organic solvents, but their propensity to aggregate in water differs with the density of the imidazolium units. The polymers are highly fluorescent, and they exhibit the amplified quenching effect when exposed to a low concentration of anionic electron-acceptor anthraquinone disulfonate. The CPEs are also quenched by a relatively low concentration of pyrophosphate by an aggregation-induced quenching mechanism. The biocidal activity of the cationic imidazolium CPEs was studied against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria in the dark and under blue-light illumination. Both polymers are effective biocides, exhibiting greater than 3 log kill with 30-60 min of light exposure at concentrations of ≤10 μg mL(-1).
Small | 2016
Guangchao Zheng; Sarah de Marchi; Vanesa López-Puente; Kadir Sentosun; Lakshminarayana Polavarapu; Ignacio Pérez-Juste; Eric H. Hill; Sara Bals; Luis M. Liz-Marzán; Isabel Pastoriza-Santos; Jorge Pérez-Juste
Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.
Journal of Colloid and Interface Science | 2015
Eric H. Hill; Yue Zhang; David G. Whitten
Previous studies of cationic p-phenylene ethynylenes oligomers (OPEs) have revealed strong antimicrobial activity and strong photophysical changes upon their aggregation that can be utilized for sensing various chemicals and biomolecules. In this article, the adsorption of two types of OPEs with different placement of charged groups onto the synthetic clay Laponite is studied, and the changes to photophysical properties, photochemical degradation efficiency, and biocidal effectiveness are determined. In addition to solution-phase studies, the material and biocidal properties of solid films formed from the OPE-Laponite complex were assessed. The results of this study suggest that OPEs aggregate on Laponite and induce aggregation between Laponite discs, leading to drastic changes to their photophysical and material properties. Solid OPE-Laponite films were shown to have fair resistance to dissolution in aqueous solution compared with Laponite alone, and adhesion and minor killing of both Gram-negative and Gram-positive bacteria on the surface was observed. The results of this study give insight into controlling the colloidal phases of Laponite via molecular aggregation, may be useful for development of sensors and biocides involving Laponite as a scaffold, and lead to further control over slow-release and surface interactions of biocidal materials.
Langmuir | 2013
Eric H. Hill; Dominic Sanchez; Deborah G. Evans; David G. Whitten
In this letter, the aggregation modes of two classes of ionic p-phenylene ethynylene oligomers with oppositely charged surfactants are studied. The location of the ionic side chains was found to influence the type of aggregate formed when an equivalent number of surfactant molecules are added to solution. When the charged groups were located at the terminal ends of the molecule, strong H-aggregates were observed to form. Alternatively, when the ionic groups were both located on opposite sides of the central phenyl ring, the formation of J-aggregates was observed. Interestingly, as the surfactant concentration approaches the critical micelle concentration, the weakly bound aggregates are dissociated and the absorbance spectrum returns to what is observed in water. This study reveals the structural basis for aggregation effects between molecules based on the p-phenylene ethynylene backbone, and gives an understanding of how to influence the aggregation mode of similar compounds.
Journal of Physical Chemistry B | 2014
Eric H. Hill; David G. Whitten; Deborah G. Evans
The development of biocides as disinfectants that do not induce bacterial resistance is crucial to health care since hospital-acquired infections afflict millions of patients every year. Recent experimental studies of a class of cationic biocides based on the phenylene ethynylene backbone, known as OPEs, have revealed that their biocidal activity is accompanied by strong morphology changes to bacterial cell membranes. In vitro studies of bacterial membrane mimics have shown changes to the lipid phase that are dependent on the length and orientation of the cationic moieties on the backbone. This study uses classical molecular dynamics to conduct a comprehensive survey of how oligomers with different chemical structures interact with each other and with a bacterial cell membrane mimic. In particular, the ability of OPEs to disrupt membrane structure is studied as a function of the length of the biocides and the orientation of their cationic moieties along the backbone of the molecule. The simulation results show that the structure of OPEs radically affects their interactions with a lipid bilayer. Biocides with branched cationic groups form trans-membrane water pores regardless of their backbone length, while only 1-1.5 nm of membrane thinning is observed with biocides with cationic groups on their terminal ends. The molecular dynamics simulations provide mechanistic details at the molecular level of the interaction of these biocidal oligomers and the lipid bilayer and corroborate experimental findings regarding observed differences in membrane disruption by OPEs with different chemical structures.
Photochemical and Photobiological Sciences | 2014
Eric H. Hill; Harry C. Pappas; Deborah G. Evans; David G. Whitten
Cationic oligo-p-phenylene ethynylenes are highly effective light-activated biocides that deal broad-spectrum damage to a variety of pathogens, including bacteria. A potential problem arising in the long-term usage of these compounds is photochemical breakdown, which nullifies their biocidal activity. Recent work has shown that these molecules complex with oppositely-charged surfactants, and that the resulting complexes are protected from photodegradation. In this manuscript, we determine the biocidal activity of an oligomer and a complex formed between it and sodium dodecyl sulfate. The complexes are able to withstand prolonged periods of irradiation, continuing to effectively kill both Gram-negative and Gram-positive bacteria, while the oligomer by itself loses its biocidal effectiveness quickly in the presence of light. In addition, damage and stress responses induced by these biocides in both E. coli and S. aureus are discussed. This work shows that complexation with surfactants is a viable method for long-term light-activated biocidal applications.
ACS Applied Materials & Interfaces | 2015
Eric H. Hill; Yue Zhang; Deborah G. Evans; David G. Whitten
Chemical and biological sensors are sought for their ability to detect enzymes as biomarkers for symptoms of various disorders, or the presence of chemical pollutants or poisons. p-Phenylene ethynylene oligomers with pendant charged groups have been recently shown to have ideal photophysical properties for sensing. In this study, one anionic and one cationic oligomer are combined with substrates that are susceptible to enzymatic degradation by phospholipases or acetylcholinesterases. The photophysical properties of the J-aggregated oligomers with the substrate are ideal for sensing, with fluorescence quantum yields of the sensors enhanced between 30 and 66 times compared to the oligomers without substrate. The phospholipase sensor was used to monitor the activity of phospholipase A1 and A2 and obtain kinetic information, though phospholipase C did not degrade the sensor. The acetylcholinesterase sensor was used to monitor enzyme activity and was also used to detect the inhibition of acetylcholinesterase by three different inhibitors. Phospholipase A2 is a biomarker for heart and circulatory disease, and acetylcholinesterase is a biomarker for Alzheimers, and indicative of exposure to certain pesticides and nerve agents. This work shows that phenylene ethynylene oligomers can be tailored to enzyme-specific sensors by careful selection of substrates that induce formation of a molecular aggregate, and that the sensing of enzymes can be extended to enzyme kinetics and detection of inhibition. Furthermore, the aggregates were studied through all-atom molecular dynamics, providing a molecular-level view of the formation of the molecular aggregates and their structure.
Langmuir | 2014
Eric H. Hill; Harry C. Pappas; David G. Whitten
Cationic oligo-p-phenylene ethynylenes have shown much promise as broad-spectrum light-activated antimicrobial compounds against both Gram-positive and Gram-negative bacteria. The anionic varieties, however, have weak biocidal activity. In this study, a complex is formed between a weakly biocidal anionic oligomer and a cationic surfactant, and the effects on their biocidal activity against Gram-negative E. coli and Gram-positive S. aureus are explored. The enhancement in biocidal activity that is observed when the complex is irradiated suggests that interfacial surfactant gives the complex a net-positive charge, allowing it to associate strongly with the bacterial membrane. The results of this study demonstrate a method for the enhancement of biocidal activity of singlet-oxygen sensitizers and corroborate the use of surfactants as trans-membrane drug-delivery agents.