Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Harding is active.

Publication


Featured researches published by Eric Harding.


Physics of Plasmas | 2015

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)

M. R. Gomez; Stephen A. Slutz; Adam B Sefkow; Kelly Hahn; Stephanie B. Hansen; P. F. Knapp; Paul Schmit; C. L. Ruiz; Daniel Brian Sinars; Eric Harding; Christopher A. Jennings; Thomas James Awe; Matthias Geissel; Dean C. Rovang; I. C. Smith; Gordon Andrew Chandler; G. W. Cooper; Michael Edward Cuneo; A. J. Harvey-Thompson; Mark Herrmann; Mark Hess; Derek C. Lamppa; M. R. Martin; R. D. McBride; Kyle Peterson; John L. Porter; Gregory A. Rochau; M. E. Savage; D. G. Schroen; W. A. Stygar

The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 × 1010 secondary deuterium-...


Physics of Plasmas | 2014

Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility

D. J. Ampleford; Stephanie B. Hansen; Christopher A. Jennings; B. Jones; C.A. Coverdale; A. J. Harvey-Thompson; G. A. Rochau; G. Dunham; Nathan W. Moore; Eric Harding; M. E. Cuneo; Y. K. Chong; R.W. Clark; N. Ouart; J.W. Thornhill; J. L. Giuliani; J. P. Apruzese

Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 1–2 keV radiation, with close to 400 kJ radiated at photon energies >1 keV and more than 50 kJ radiated in a single line (Al Ly-α). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.8–25 keV) indicates electron temperatures ranging from a few 100 eV to a few keV are present, indicative of substantial temperature gradients.


Physics of Plasmas | 2015

Diagnosing magnetized liner inertial fusion experiments on Za)

Stephanie B. Hansen; M. R. Gomez; Adam B Sefkow; Stephen A. Slutz; Daniel Brian Sinars; Kelly Hahn; Eric Harding; P. F. Knapp; Paul Schmit; Thomas James Awe; R. D. McBride; Christopher A. Jennings; Matthias Geissel; A. J. Harvey-Thompson; Kyle Peterson; Dean C. Rovang; Gordon Andrew Chandler; G. W. Cooper; Michael Edward Cuneo; Mark Herrmann; Mark Hess; Owen Johns; Derek C. Lamppa; M. R. Martin; John L. Porter; G. K. Robertson; G. A. Rochau; C. L. Ruiz; M. E. Savage; I. C. Smith

Magnetized Liner Inertial Fusion experiments performed at Sandias Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.


Review of Scientific Instruments | 2015

Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments

Eric Harding; Tommy Ao; J. E. Bailey; G. Loisel; Daniel Brian Sinars; Matthias Geissel; G. A. Rochau; I. C. Smith

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.


Journal of Applied Physics | 2016

Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

R.W. Lemke; Daniel H. Dolan; D. G. Dalton; Justin Brown; K. Tomlinson; G. R. Robertson; Marcus D. Knudson; Eric Harding; A. E. Mattsson; John H. Carpenter; R. R. Drake; Kyle Robert Cochrane; B. E. Blue; Allen C. Robinson; Thomas R. Mattsson

We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.


Physics of Plasmas | 2016

Exploring magnetized liner inertial fusion with a semi-analytic model

R. D. McBride; Stephen A. Slutz; Roger A. Vesey; M. R. Gomez; Adam B Sefkow; Stephanie B. Hansen; P. F. Knapp; Paul Schmit; Matthias Geissel; A. J. Harvey-Thompson; Christopher A. Jennings; Eric Harding; Thomas James Awe; Dean C. Rovang; Kelly Hahn; M. R. Martin; Kyle Robert Cochrane; Kyle Peterson; Gregory A. Rochau; John L. Porter; W. A. Stygar; Edward Michael Campbell; Charles Nakhleh; Mark Herrmann; Michael Edward Cuneo; Daniel Brian Sinars

In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.


Physics of Plasmas | 2015

Effects of magnetization on fusion product trapping and secondary neutron spectraa)

P. F. Knapp; Paul Schmit; Stephanie B. Hansen; M. R. Gomez; Kelly Hahn; Daniel Brian Sinars; Kyle Peterson; Stephen A. Slutz; Adam B Sefkow; Thomas James Awe; Eric Harding; Christopher A. Jennings; Michael P. Desjarlais; Gordon Andrew Chandler; G. W. Cooper; Michael Edward Cuneo; Matthias Geissel; A. J. Harvey-Thompson; John L. Porter; Gregory A. Rochau; Dean C. Rovang; C. L. Ruiz; M. E. Savage; Ian Craig Smith; W. A. Stygar; Mark Herrmann

By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.


Physics of Plasmas | 2018

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Matthias Geissel; A. J. Harvey-Thompson; Thomas James Awe; D.E. Bliss; M.E. Glinsky; M. R. Gomez; Eric Harding; Stephanie B. Hansen; Christopher A. Jennings; Mark Kimmel; P. F. Knapp; Sean M. Lewis; Kyle Peterson; M. Schollmeier; Jens Schwarz; Jonathon Shores; Stephen A. Slutz; Daniel Brian Sinars; I. C. Smith; C. Shane Speas; Roger A. Vesey; M. R. Weis; John L. Porter

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the lasers critical density, electron temperatures of 3–5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the lasers critical dens...


Physics of Plasmas | 2018

Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

Stephanie B. Hansen; Eric Harding; P. F. Knapp; M. R. Gomez; T. Nagayama; J. E. Bailey

The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter...


Review of Scientific Instruments | 2016

Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

G. S. Dunham; Eric Harding; G. Loisel; P. Lake; L. B. Nielsen-Weber

Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

Collaboration


Dive into the Eric Harding's collaboration.

Top Co-Authors

Avatar

Daniel Brian Sinars

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Stephanie B. Hansen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

M. R. Gomez

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

P. F. Knapp

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam B Sefkow

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Matthias Geissel

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kyle Peterson

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas James Awe

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kelly Hahn

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge