Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Herlenius is active.

Publication


Featured researches published by Eric Herlenius.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor

Björn Johansson; Linda Halldner; Thomas V. Dunwiddie; Susan A. Masino; Wolfgang Poelchen; Lydia Giménez-Llort; Rosa M. Escorihuela; Alberto Fernández-Teruel; Zsuzsanna Wiesenfeld-Hallin; Xiao-Jun Xu; Anna Hårdemark; Christer Betsholtz; Eric Herlenius; Bertil B. Fredholm

Caffeine is believed to act by blocking adenosine A1 and A2A receptors (A1R, A2AR), indicating that some A1 receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A1R (A1R−/−). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A1R+/+ mice, but A1R−/− mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A1R−/− mice. In A1R+/− mice the potency of adenosine was halved, as was the number of A1R. In A1R−/− mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A1Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important.


Experimental Neurology | 2004

Development of neurotransmitter systems during critical periods

Eric Herlenius; Hugo Lagercrantz

Neurotransmitters are released from neurons and mediate neuronal communication. Neuromodulators can also be released from other cells and influence the neuronal signaling. Both neurotransmitters and neuromodulators play an important role in the shaping and the wiring of the nervous system possibly during critical windows of the development. Monoamines are expressed in the very early embryo, at which stage the notochord already contains high noradrenaline levels. Purines and neuropeptides are probably also expressed at an early stage, in a similar way as they occur during early phylogenesis. The levels of most neurotransmitters and neuromodulators increase concomitantly with synapse formation. Some of them surge during the perinatal period (such as glutamate, catecholamines, and some neuropeptides) and then level off. The interesting question is to what extent the expression of neuroactive agents is related to the functional state of the fetus and the newborn. Monoamines are expressed in the very early embryo, at which stage the notochord already contains high noradrenaline levels. They may have an important role for neurotransmission in the fetus. In the adult mammal, the fast switching excitatory amino acids dominate. However, they also seem to be important for the wiring of the brain and the plasticity before birth. NMDA receptors that are supposed to mediate these effects dominate and are then substituted by AMPA receptors. The main inhibitory amino acids gamma-aminobutyric acid (GABA) and glycine are excitatory in the developing brain by depolarizing developing neurons that have high Cl- concentrations. This seems to be of major importance for the wiring of neuronal circuits. Prenatal or neonatal stress, for example, hypoxia, can affect the programming of neurotransmitter and receptor expression, which can lead to long-term behavioral effects.


Early Human Development | 2001

Neurotransmitters and neuromodulators during early human development

Eric Herlenius; Hugo Lagercrantz

BACKGROUND Neurotransmitters such as monoamines appear in the embryo before the neurones are differentiated. They may have other functions than neurotransmission during embryogenesis such as differentiation and neuronal growth. For example, serotonin may act as a morphogen. A number of neuropeptides are expressed during ontogenesis, but their function has been difficult to establish. Maybe some of them remain as evolutionary residues. Fast-switching neurotransmitters like the excitatory amino acids and the more ionotropic receptors dominate in the human brain, but appear probably later during evolution as well as during ontogeny. METHODS The distribution of catecholamines during development has been analysed with a fluorescence method, while most of the other neurotransmitters have been mapped with immunohistochemical methods. The classical method to determine the physiological role of a neurotransmitter or modulator is to study the physiological effect of its antagonist, blocking the endogenous activity. By transgenic technique, the genes encoding for enzymes involved in the synthesis of neurotransmitters can be knocked-out. MAJOR FINDINGS Pharmacological blocking of endogenous activity has, for example, demonstrated that adenosine suppresses fetal respiration. Knocking out the dopamine beta-hydroxylase gene results in fetal death, suggesting that noradrenaline is essential for survival. Some neurotransmitters change their effect during embryogenesis, e.g. GABA which is excitatory in the embryo, but inhibitory after birth due to a switch from a high to low chloride content in the nerve cells. It is possible that this is of importance for the wiring of neuronal network in early life. NMDA receptors dominate in the foetus, while kainate and AMPA receptors appear later. At birth, there is a surge of neurotransmitters such as catecholamines, which may be of importance for the neonatal adaptation. CONCLUSIONS Neurotransmitters and modulators are not only important for the neural trafficking in the embryo, but also for the development of the neuronal circuits. Prenatal or neonatal stress (hypoxia), as well as various drugs, may disturb the wiring and cause long-term behavioural effects (fetal and neonatal programming).


American Journal of Human Genetics | 2012

PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome.

Sarah E. Heron; Bronwyn E. Grinton; Sara Kivity; Zaid Afawi; Sameer M. Zuberi; James N. Hughes; Clair Pridmore; Bree L. Hodgson; Xenia Iona; Lynette G. Sadleir; James T. Pelekanos; Eric Herlenius; Hadassa Goldberg-Stern; Haim Bassan; Eric Haan; Amos D. Korczyn; Alison Gardner; Mark Corbett; Jozef Gecz; Paul Q. Thomas; John C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer; Leanne M. Dibbens

Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).


Journal of Experimental Medicine | 2005

Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block

Stina Salomonsson; Sven-Erik Sonesson; Lars Ottosson; Saad Muhallab; Tomas Olsson; Maria Sunnerhagen; Vijay K. Kuchroo; Peter Thorén; Eric Herlenius; Marie Wahren-Herlenius

Congenital heart block develops in fetuses after placental transfer of Ro/SSA autoantibodies from rheumatic mothers. The condition is often fatal and the majority of live-born children require a pacemaker at an early age. The specific antibody that induces the heart block and the mechanism by which it mediates the pathogenic effect have not been elucidated. In this study, we define the cellular mechanism leading to the disease and show that maternal autoantibodies directed to a specific epitope within the leucine zipper amino acid sequence 200–239 (p200) of the Ro52 protein correlate with prolongation of fetal atrioventricular (AV) time and heart block. This finding was further confirmed experimentally in that pups born to rats immunized with p200 peptide developed AV block. p200-specific autoantibodies cloned from patients bound cultured cardiomyocytes and severely affected Ca2+ oscillations, leading to accumulating levels and overload of intracellular Ca2+ levels with subsequent loss of contractility and ultimately apoptosis. These findings suggest that passive transfer of maternal p200 autoantibodies causes congenital heart block by dysregulating Ca2+ homeostasis and inducing death in affected cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

Johan Jäderstad; Linda Maria Jäderstad; Jianxue Li; Satyan Chintawar; Carmen Saltó; Massimo Pandolfo; Vaclav Ourednik; Yang D. Teng; Richard L. Sidman; Ernest Arenas; Evan Y. Snyder; Eric Herlenius

How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.


Epilepsia | 2007

SCN2A Mutations and Benign Familial Neonatal-Infantile Seizures: The Phenotypic Spectrum

Eric Herlenius; Sarah E. Heron; Bronwyn E. Grinton; Deborah Keay; Ingrid E. Scheffer; John C. Mulley; Samuel F. Berkovic

Summary:  Mutations of the sodium channel subunit gene SCN2A have been described in families with benign familial neonatal‐infantile seizure (BFNIS). We describe two large families with BFNIS and novel SCN2A mutations. The families had 12 and 9 affected individuals, respectively, with phenotypes consistent with BFNIS. Two mutations were discovered in SCN2A (E430Q; I1596S). Both families had individuals with neonatal onset but the typical age of onset was in the early infantile period (mean 3.0 months). One mutation positive individual, with an otherwise typical clinical pattern, had seizures beginning at 13 months. Two individuals with SCN2A mutations were identified with seizures in later life. In each family a single individual with infantile seizures was mutation negative and thus represented phenocopies. This study extends the age range of presentation of BFNIS, confirms that neonatal and early infantile onsets are characteristic, and emphasizes the role of molecular diagnosis to confirm the etiology.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates

Annika Olsson Hofstetter; Sipra Saha; Veronica Siljehav; Per-Johan Jakobsson; Eric Herlenius

Infection during the neonatal period commonly induces apnea episodes, and the proinflammatory cytokine IL-1β may serve as a critical mediator between these events. To determine the mechanism by which IL-1β depresses respiration, we examined a prostaglandin E2 (PGE2)-dependent pathway in newborn mice and human neonates. IL-1β and transient anoxia rapidly induced brainstem-specific microsomal prostaglandin E synthase-1 (mPGES-1) activity in neonatal mice. Furthermore, IL-1β reduced respiratory frequency during hyperoxia and depressed hypoxic gasping and autoresuscitation in mPGES-1 wild-type mice, but not in mPGES-1 knockout mice. In wild-type mice, PGE2 induced apnea and irregular breathing patterns in vivo and inhibited brainstem respiratory rhythm generation in vitro. Mice lacking the EP3 receptor (EP3R) for PGE2 exhibited fewer apneas and sustained brainstem respiratory activity, demonstrating that PGE2 exerts its respiratory effects via EP3R. In human neonates, the infectious marker C-reactive protein was correlated with elevated PGE2 in the cerebrospinal fluid, and elevated central PGE2 was associated with an increased apnea frequency. We conclude that IL-1β adversely affects breathing and its control by mPGES-1 activation and PGE2 binding to brainstem EP3 receptors, resulting in increased apnea frequency and hypoxia-induced mortality.


Pediatric Research | 1997

Adenosine Modulates Inspiratory Neurons and the Respiratory Pattern in the Brainstem of Neonatal Rats

Eric Herlenius; Hugo Lagercrantz; Yuji Yamamoto

The role of adenosine in the modulation of respiration-related neurons was examined using an in vitro brainstem-spinal cord preparation from neonatal rats (0-4 d old). Respiratory activity was recorded from the C4 or C5 ventral roots by suction electrodes and from inspiratory related neurons (I neurons) in the rostral ventrolateral medulla by microelectrodes. The following substances were added to the preparation superfusate, and their effect was evaluated: the adenosine A1 receptor agonist N6-(2-phenylisopropyl)adenosine, R(-)isomer (R-PIA), the adenosine uptake blocker dipyridamole, the adenosine receptor antagonist theophylline, and the specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). R-PIA and dipyridamole decreased the activity of I neurons and the C4 respiratory burst rate. Furthermore, these compounds induced a significantly more irregular respiratory rate in three-quarters of preparations from the youngest animals (<48 h old) compared with that of controls. Theophylline or DPCPX reversed the effects of both R-PIA and dipyridamole on respiratory rate, regularity of respiratory rate, inspiratory time, amplitude, and intra-burst frequency of I neurons. Thus, adenosine depresses both the I neurons in the rostral ventrolateral medulla and the respiratory motor output. This depression of I neurons and respiratory rate can be abolished by theophylline primarily through a blockade of medullary adenosine A1 receptors. An age-dependent correlation of the effects of R-PIA and dipyridamole, with a more pronounced decrease in respiratory activity in preparations from younger animals, indicates that adenosinergic modulation of medullary respiration-related neurons changes during the first days of postnatal life.


Pediatric Research | 2000

Maternal caffeine intake has minor effects on adenosine receptor ontogeny in the rat brain.

Ulrika Ådén; Eric Herlenius; Lie-Qi Tang; Bertil B. Fredholm

Maternal caffeine intake has been suggested to influence the offspring. We have studied the effects of maternal caffeine intake on adenosine and GABA receptors, targets for caffeine, during development of the rat brain. Caffeine (0.3 g/L) was added to the drinking water of rat dams during pregnancy and early postnatal life. Adenosine A1 and A2A and GABAA receptor development was studied using receptor autoradiography and in situ hybridization. Pups were examined on embryonic d 14 (E14), E18, E21, 2 h after birth (P2h), P24h, postnatal d 3 (P3), P7, P14, and P21. Adenosine A1 receptor mRNA was detected at E14 and receptors at E18. A1 mRNA levels increased from the level reached at E18 between P3 and P14 (maximally a doubling), whereas A1 receptors, studied by [3H]-1,3-dipropyl-8-cyclopentyl xanthine binding, increased later and to a much larger extent (about 10-fold) postnatally. Caffeine treatment had no significant effect on adenosine A1 receptors or on A1 receptor mRNA. A2A mRNA had reached adult levels by E18, whereas receptor levels were low or undetectable before birth and increased dramatically until P14. Caffeine did not influence A2A receptors or A2A receptor mRNA at any stage during development. [3H]-flunitrazepam binding, representing GABAA receptors, showed large regional variations during ontogeny, but there were no clear differences between the caffeine-exposed and the nonexposed pups. Thus, exposure to a low dose of caffeine during gestation and postnatal life had only minor effects on development of adenosine A1 and A2A receptors and GABAA receptors in the rat brain.

Collaboration


Dive into the Eric Herlenius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Forsberg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Johan Jäderstad

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Per-Johan Jakobsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Maria Jäderstad

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge