Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Alm is active.

Publication


Featured researches published by Eric J. Alm.


Nature | 2011

Ecology drives a global network of gene exchange connecting the human microbiome

Chris S. Smillie; Mark B. Smith; Jonathan Friedman; Otto X. Cordero; Lawrence A. David; Eric J. Alm

Horizontal gene transfer (HGT), the acquisition of genetic material from non-parental lineages, is known to be important in bacterial evolution. In particular, HGT provides rapid access to genetic innovations, allowing traits such as virulence, antibiotic resistance and xenobiotic metabolism to spread through the human microbiome. Recent anecdotal studies providing snapshots of active gene flow on the human body have highlighted the need to determine the frequency of such recent transfers and the forces that govern these events. Here we report the discovery and characterization of a vast, human-associated network of gene exchange, large enough to directly compare the principal forces shaping HGT. We show that this network of 10,770 unique, recently transferred (more than 99% nucleotide identity) genes found in 2,235 full bacterial genomes, is shaped principally by ecology rather than geography or phylogeny, with most gene exchange occurring between isolates from ecologically similar, but geographically separated, environments. For example, we observe 25-fold more HGT between human-associated bacteria than among ecologically diverse non-human isolates (P = 3.0 × 10−270). We show that within the human microbiome this ecological architecture continues across multiple spatial scales, functional classes and ecological niches with transfer further enriched among bacteria that inhabit the same body site, have the same oxygen tolerance or have the same ability to cause disease. This structure offers a window into the molecular traits that define ecological niches, insight that we use to uncover sources of antibiotic resistance and identify genes associated with the pathology of meningitis and other diseases.


PLOS Computational Biology | 2012

Inferring Correlation Networks from Genomic Survey Data

Jonathan Friedman; Eric J. Alm

High-throughput sequencing based techniques, such as 16S rRNA gene profiling, have the potential to elucidate the complex inner workings of natural microbial communities - be they from the worlds oceans or the human gut. A key step in exploring such data is the identification of dependencies between members of these communities, which is commonly achieved by correlation analysis. However, it has been known since the days of Karl Pearson that the analysis of the type of data generated by such techniques (referred to as compositional data) can produce unreliable results since the observed data take the form of relative fractions of genes or species, rather than their absolute abundances. Using simulated and real data from the Human Microbiome Project, we show that such compositional effects can be widespread and severe: in some real data sets many of the correlations among taxa can be artifactual, and true correlations may even appear with opposite sign. Additionally, we show that community diversity is the key factor that modulates the acuteness of such compositional effects, and develop a new approach, called SparCC (available at https://bitbucket.org/yonatanf/sparcc), which is capable of estimating correlation values from compositional data. To illustrate a potential application of SparCC, we infer a rich ecological network connecting hundreds of interacting species across 18 sites on the human body. Using the SparCC network as a reference, we estimated that the standard approach yields 3 spurious species-species interactions for each true interaction and misses 60% of the true interactions in the human microbiome data, and, as predicted, most of the erroneous links are found in the samples with the lowest diversity.


Nucleic Acids Research | 2005

A novel method for accurate operon predictions in all sequenced prokaryotes

Morgan N. Price; Katherine H. Huang; Eric J. Alm; Adam P. Arkin

We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacter pylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from six phylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC 6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.


Genome Biology | 2014

Host lifestyle affects human microbiota on daily timescales

Lawrence A. David; Arne C. Materna; Jonathan Friedman; Maria I Campos-Baptista; Matthew C. Blackburn; Allison Perrotta; Susan E. Erdman; Eric J. Alm

BackgroundDisturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive understanding of how lifestyle affects the dynamics of human-associated microbial communities.ResultsHere, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and salivary microbiota dynamics of two individuals over the course of one year. These time series show overall microbial communities to be stable for months. However, rare events in each subjects’ life rapidly and broadly impacted microbiota dynamics. Travel from the developed to the developing world in one subject led to a nearly two-fold increase in the Bacteroidetes to Firmicutes ratio, which reversed upon return. Enteric infection in the other subject resulted in the permanent decline of most gut bacterial taxa, which were replaced by genetically similar species. Still, even during periods of overall community stability, the dynamics of select microbial taxa could be associated with specific host behaviors. Most prominently, changes in host fiber intake positively correlated with next-day abundance changes among 15% of gut microbiota members.ConclusionsOur findings suggest that although human-associated microbial communities are generally stable, they can be quickly and profoundly altered by common human actions and experiences.


Science | 2012

Population Genomics of Early Events in the Ecological Differentiation of Bacteria

B. Jesse Shapiro; Jonathan Friedman; Otto X. Cordero; Sarah P. Preheim; Sonia Timberlake; Gitta Szabó; Martin F. Polz; Eric J. Alm

Some Sort of Species Certain populations of bacteria are known to show ecological differentiation, but how this happens has remained controversial. Shapiro et al. (p. 48; see the Perspective by Papke and Gogarten) examined whole-genome sequences from ecologically divergent Vibrio populations and found that genes and genome regions containing so-called “eco-SNPs” (single-nuleotide polymorphisms) have swept through populations. These regions differentiate the bacteria genetically, apparently according to the type of substratum on which they live. Subsequently, tight genotypic clusters may have emerged as a result of preferential recombination occurring within particular habitats. Although specialization into different habitats may reduce gene flow between bacterial populations, the bacteria will always remain open to taking up DNA from other populations and so they cannot be said to be species in the eukaryotic sense. Ecologically separated Vibrio populations diverge by gene-specific rather than genome-wide selective sweeps. Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observations of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.


Nature | 2011

Rapid evolutionary innovation during an Archaean genetic expansion

Lawrence A. David; Eric J. Alm

The natural history of Precambrian life is still unknown because of the rarity of microbial fossils and biomarkers. However, the composition of modern-day genomes may bear imprints of ancient biogeochemical events. Here we use an explicit model of macroevolution including gene birth, transfer, duplication and loss events to map the evolutionary history of 3,983 gene families across the three domains of life onto a geological timeline. Surprisingly, we find that a brief period of genetic innovation during the Archaean eon, which coincides with a rapid diversification of bacterial lineages, gave rise to 27% of major modern gene families. A functional analysis of genes born during this Archaean expansion reveals that they are likely to be involved in electron-transport and respiratory pathways. Genes arising after this expansion show increasing use of molecular oxygen (P = 3.4 × 10−8) and redox-sensitive transition metals and compounds, which is consistent with an increasingly oxygenating biosphere.


Clinical Infectious Diseases | 2014

Fecal Microbiota Transplant for Relapsing Clostridium difficile Infection Using a Frozen Inoculum From Unrelated Donors: A Randomized, Open-Label, Controlled Pilot Study

Ilan Youngster; Jenny Sauk; Christina Pindar; Robin G. Wilson; Jess L. Kaplan; Mark B. Smith; Eric J. Alm; Dirk Gevers; George Russell; Elizabeth L. Hohmann

BACKGROUND Recurrent Clostridium difficile infection (CDI) with poor response to standard antimicrobial therapy is a growing medical concern. We aimed to investigate the outcomes of fecal microbiota transplant (FMT) for relapsing CDI using a frozen suspension from unrelated donors, comparing colonoscopic and nasogastric tube (NGT) administration. METHODS Healthy volunteer donors were screened and a frozen fecal suspension was generated. Patients with relapsing/refractory CDI were randomized to receive an infusion of donor stools by colonoscopy or NGT. The primary endpoint was clinical resolution of diarrhea without relapse after 8 weeks. The secondary endpoint was self-reported health score using standardized questionnaires. RESULTS A total of 20 patients were enrolled, 10 in each treatment arm. Patients had a median of 4 (range, 2-16) relapses prior to study enrollment, with 5 (range, 3-15) antibiotic treatment failures. Resolution of diarrhea was achieved in 14 patients (70%) after a single FMT (8 of 10 in the colonoscopy group and 6 of 10 in the NGT group). Five patients were retreated, with 4 obtaining cure, resulting in an overall cure rate of 90%. Daily number of bowel movements changed from a median of 7 (interquartile range [IQR], 5-10) the day prior to FMT to 2 (IQR, 1-2) after the infusion. Self-ranked health score improved significantly, from a median of 4 (IQR, 2-6) before transplant to 8 (IQR, 5-9) after transplant. No serious or unexpected adverse events occurred. CONCLUSIONS In our initial feasibility study, FMT using a frozen inoculum from unrelated donors is effective in treating relapsing CDI. NGT administration appears to be as effective as colonoscopic administration. CLINICAL TRIALS REGISTRATION NCT01704937.


Journal of Bacteriology | 2004

Global Transcriptome Analysis of the Heat Shock Response of Shewanella oneidensis

Haichun Gao; Yue Wang; Xueduan Liu; Tingfen Yan; Liyou Wu; Eric J. Alm; Adam P. Arkin; Dorothea K. Thompson; Jizhong Zhou

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organisms molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress by using whole-genome DNA microarrays for S. oneidensis. Approximately 15% (n = 711) of the total predicted S. oneidensis genes (n = 4,648) represented on the microarray were significantly up- or downregulated (P < 0.05) over a 25-min period after shift to the heat shock temperature. As expected, the majority of the genes that showed homology to known chaperones and heat shock proteins in other organisms were highly induced. In addition, a number of predicted genes, including those encoding enzymes in glycolysis and the pentose cycle, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed downregulated coexpression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, a putative regulatory site with high conservation to the Escherichia coli sigma32-binding consensus sequence was identified upstream of a number of heat-inducible genes.


PLOS ONE | 2010

Unlocking Short Read Sequencing for Metagenomics

Sébastien Rodrigue; Arne C. Materna; Sonia Timberlake; Matthew C. Blackburn; Rex R. Malmstrom; Eric J. Alm; Sallie W. Chisholm

Background Different high-throughput nucleic acid sequencing platforms are currently available but a trade-off currently exists between the cost and number of reads that can be generated versus the read length that can be achieved. Methodology/Principal Findings We describe an experimental and computational pipeline yielding millions of reads that can exceed 200 bp with quality scores approaching that of traditional Sanger sequencing. The method combines an automatable gel-less library construction step with paired-end sequencing on a short-read instrument. With appropriately sized library inserts, mate-pair sequences can overlap, and we describe the SHERA software package that joins them to form a longer composite read. Conclusions/Significance This strategy is broadly applicable to sequencing applications that benefit from low-cost high-throughput sequencing, but require longer read lengths. We demonstrate that our approach enables metagenomic analyses using the Illumina Genome Analyzer, with low error rates, and at a fraction of the cost of pyrosequencing.


Journal of Bacteriology | 2006

Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach

Aindrila Mukhopadhyay; Zhili He; Eric J. Alm; Adam P. Arkin; Edward E. K. Baidoo; Sharon C. Borglin; Wenqiong Chen; Terry C. Hazen; Qiang He; Hoi-Ying N. Holman; Katherine H. Huang; Rick Huang; Dominique Joyner; Natalie Katz; Martin Keller; Paul Oeller; Alyssa M. Redding; Jun Sun; Judy D. Wall; Jing Wei; Zamin Yang; Huei-Che Yen; Jizhong Zhou; Jay D. Keasling

The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

Collaboration


Dive into the Eric J. Alm's collaboration.

Top Co-Authors

Avatar

Adam P. Arkin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zain Kassam

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Susan E. Erdman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan Friedman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark B. Smith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sean M. Kearney

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sarah P. Preheim

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge