Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Bylaska is active.

Publication


Featured researches published by Eric J. Bylaska.


Computer Physics Communications | 2000

High performance computational chemistry: An overview of NWChem a distributed parallel application☆

Ricky A. Kendall; Edoardo Aprà; David E. Bernholdt; Eric J. Bylaska; Michel Dupuis; George I. Fann; Robert J. Harrison; Jialin Ju; Jeffrey A. Nichols; Jarek Nieplocha; T.P. Straatsma; Theresa L. Windus; Adrian T. Wong

NWChem is the software package for computational chemistry on massively parallel computing systems developed by the High Performance Computational Chemistry Group for the Environmental Molecular Sciences Laboratory. The software provides a variety of modules for quantum mechanical and classical mechanical simulation. This article describes the design and some implementation details of the overall NWChem architecture. The architecture facilitates rapid development and portability of fully distributed application modules. We also delineate some of the functionality within NWChem and show performance of a few of the modules within NWChem.


Chemical Physics Letters | 1995

C20: Fullerene, Bowl or Ring? New Results from Coupled-Cluster Calculations

Peter R. Taylor; Eric J. Bylaska; John H. Weare; Ryoichi Kawai

Abstract Contrary to recent experimental evidence suggesting that the monocyclic ring is the most stable 20-atom carbon species, highly accurate calculations convincingly predict that the smallest fullerene, dodecahedral C20, has the lowest energy. A related corannulene-like bowl is nearly degenerate in energy to the fullerene. Thermodynamic considerations suggest that at formation temperatures of around 700 K the bowl should be the dominant species.


Physical Chemistry Chemical Physics | 2010

Utilizing High Performance Computing for Chemistry: Parallel Computational Chemistry

Wibe A. de Jong; Eric J. Bylaska; Niranjan Govind; Curtis L. Janssen; Karol Kowalski; Thomas J. J. Müller; Ida M. B. Nielsen; Hubertus J. J. van Dam; Valera Veryazov; Roland Lindh

Parallel hardware has become readily available to the computational chemistry research community. This perspective will review the current state of parallel computational chemistry software utilizing high-performance parallel computing platforms. Hardware and software trends and their effect on quantum chemistry methodologies, algorithms, and software development will also be discussed.


Journal of Chemical Physics | 2008

Equatorial and apical solvent shells of the UO22+ ion

Patrick Nichols; Eric J. Bylaska; Gregory K. Schenter; Wibe A. de Jong

First principles molecular dynamics simulations of the hydration shells surrounding UO(2)(2+) ions are reported for temperatures near 300 K. Most of the simulations were done with 64 solvating water molecules (22 ps). Simulations with 122 water molecules (9 ps) were also carried out. The hydration structure predicted from the simulations was found to agree with very well-known results from x-ray data. The average U=O bond length was found to be 1.77 A. The first hydration shell contained five trigonally coordinated water molecules that were equatorially oriented about the O-U-O axis with the hydrogen atoms oriented away from the uranium atom. The five waters in the first shell were located at an average distance of 2.44 A (2.46 A, 122 water simulation). The second hydration shell was composed of distinct equatorial and apical regions resulting in a peak in the U-O radial distribution function at 4.59 A. The equatorial second shell contained ten water molecules hydrogen bonded to the five first shell molecules. Above and below the UO(2)(2+) ion, the water molecules were found to be significantly less structured. In these apical regions, water molecules were found to sporadically hydrogen bond to the oxygen atoms of the UO(2)(2+), oriented in such a way as to have their protons pointed toward the cation. While the number of apical waters varied greatly, an average of five to six waters was found in this region. Many water transfers into and out of the equatorial and apical second solvation shells were observed to occur on a picosecond time scale via dissociative mechanisms. Beyond these shells, the bonding pattern substantially returned to the tetrahedral structure of bulk water.


Journal of Chemical Theory and Computation | 2009

Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem.

Patrick Nichols; Niranjan Govind; Eric J. Bylaska; W. A. de Jong

Relativistic spin-orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin-orbit pseudopotentials that are directly generated from the atomic Dirac-Kohn-Sham wave functions or atomic ZORA-Kohn-Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin-orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2, AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.


Journal of Chemical Physics | 2010

Structure and dynamics of the hydration shells of the Zn2+ ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations

Emilie Cauet; Stuart Bogatko; John H. Weare; John L. Fulton; Gregory K. Schenter; Eric J. Bylaska

Results of ab initio molecular dynamics (AIMD) simulations (density functional theory+PBE96) of the dynamics of waters in the hydration shells surrounding the Zn(2+) ion (T approximately 300 K, rho approximately 1 gm/cm(3)) are compared to simulations using a combined quantum and classical molecular dynamics [AIMD/molecular mechanical (MM)] approach. Both classes of simulations were performed with 64 solvating water molecules ( approximately 15 ps) and used the same methods in the electronic structure calculation (plane-wave basis set, time steps, effective mass, etc.). In the AIMD/MM calculation, only six waters of hydration were included in the quantum mechanical (QM) region. The remaining 58 waters were treated with a published flexible water-water interaction potential. No reparametrization of the water-water potential was attempted. Additional AIMD/MM simulations were performed with 256 water molecules. The hydration structures predicted from the AIMD and AIMD/MM simulations are found to agree in detail with each other and with the structural results from x-ray data despite the very limited QM region in the AIMD/MM simulation. To further evaluate the agreement of these parameter-free simulations, predicted extended x-ray absorption fine structure (EXAFS) spectra were compared directly to the recently obtained EXAFS data and they agree in remarkable detail with the experimental observations. The first hydration shell contains six water molecules in a highly symmetric octahedral structure is (maximally located at 2.13-2.15 A versus 2.072 A EXAFS experiment). The widths of the peak of the simulated EXAFS spectra agree well with the data (8.4 A(2) versus 8.9 A(2) in experiment). Analysis of the H-bond structure of the hydration region shows that the second hydration shell is trigonally bound to the first shell water with a high degree of agreement between the AIMD and AIMD/MM calculations. Beyond the second shell, the bonding pattern returns to the tetrahedral structure of bulk water. The AIMD/MM results emphasize the importance of a quantum description of the first hydration shell to correctly describe the hydration region. In these calculations the full d(10) electronic structure of the valence shell of the Zn(2+) ion is retained. The simulations show substantial and complex charge relocation on both the Zn(2+) ion and the first hydration shell. The dipole moment of the waters in the first hydration shell is 3.4 D (3.3 D AIMD/MM) versus 2.73 D bulk. Little polarization is found for the waters in the second hydration shell (2.8 D). No exchanges were seen between the first and the second hydrations shells; however, many water transfers between the second hydration shell and the bulk were observed. For 64 waters, the AIMD and AIMD/MM simulations give nearly identical results for exchange dynamics. However, in the larger particle simulations (256 waters) there is a significant reduction in the second shell to bulk exchanges.


Chemical Physics Letters | 2000

Ab initio molecular dynamics simulations of aluminum ion solvation in water clusters

M.I. Lubin; Eric J. Bylaska; John H. Weare

Abstract The results of ab initio molecular dynamics simulations of the solvation of Al 3+ and its hydrolyzation products in water clusters are reported. Al 3+ ions in water clusters (6⩽ n ⩽16) form a stable hexa-hydrate Al(H 2 O) 6 3+ complex in finite temperature simulations. The deprotonated Al(H 2 O) 2 (OH) 4 − complex evolves into a tetra-coordinated Al(OH) 4 − aluminate ion with two water molecules in the second cluster solvation shell. The influence of a strong polarization of the OH bonds in the first solvation shell on the proton transfer mechanism is discussed.


Geochimica et Cosmochimica Acta | 2003

Molecular simulation of the magnetite-water interface

James R. Rustad; Andrew R. Felmy; Eric J. Bylaska

This paper reports molecular dynamics simulations of the magnetite (001)-water interface, both in pure water and in the presence of a 2.3 molal solution of NaClO4. The simulations are carried out using a potential model designed to allow the protonation states of the surface functional groups to evolve dynamically through the molecular dynamics trajectory. The primary structural quantities investigated are the populations of the surface functional groups, the distribution of electrolyte in the solution, and the surface hydrogen bonding relationships. The surface protonation states are dominated by extensive hydrolysis of interfacial water molecules, giving rise to a dipolar surface dominated by FeOH2+-OH2-OH− arrangements. Triply coordinated, more deeply buried, surface sites are inert, probably due to the relative lack of solvent in their vicinity. The electrolyte distribution is oscillatory, arranging preferentially in layers defined by the solvating water molecules. The presence of electrolyte has a negligible effect on the protonation states of the surface functional groups. Steady-state behavior is obtained for the protonation states of the surface functional groups and hydrogen-bonding network. Although the overall structure of the electrolyte distribution is fairly well established, the electrolyte distribution has not fully equilibrated, as evidenced by the asymmetry in the distribution from the top to the bottom of the slab.


Journal of Physical Chemistry A | 2011

Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies.

Raymond Atta-Fynn; Eric J. Bylaska; Gregory K. Schenter; Wibe A. de Jong

Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm(3+) in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm(3+) and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 Å and 4.67-4.75 Å respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 Å. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm(3+) and water are in good agreement with experimental data.


Journal of Physical Chemistry A | 2008

Combined Quantum Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Solution

Marat Valiev; Eric J. Bylaska; Michel Dupuis; Paul G. Tratnyek

The reductive dechlorination of carbon tetrachloride, CCl4, by a concerted electron transfer-bond breaking mechanism was studied using combined high level quantum mechanical and molecular mechanics (QM/MM) approach. The free energy activation barriers for the first electron-transfer step were determined from the dissociation profiles of CCl4 and *CCl4(-) complexes in aqueous phase using hybrid-free energy QM/MM methodologies. Both density functional and coupled cluster perturbative triples (CCSD(T)) versions of QM/MM methods were investigated. The impact of the implicit solvent description based on continuum (COSMO) solvent models was also analyzed. QM/MM calculations at the CCSD(T)/aug-cc-pVDZ/SPCE level of theory predict that the activation barriers vary from 0.7 to 35.2 kcal/mol for -2.32 and 0.93 V reduction potentials respectively. Good agreement with experimental data for oxide-free iron electrodes (-0.6 to -1.2 V reduction potentials) is observed indicating that the measured activation barriers are consistent with the concerted electron transfer-bond-breaking mechanism.

Collaboration


Dive into the Eric J. Bylaska's collaboration.

Top Co-Authors

Avatar

John H. Weare

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wibe A. de Jong

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Felmy

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James R. Rustad

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Niranjan Govind

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marat Valiev

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Gao

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Rosso

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge