Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Cantor is active.

Publication


Featured researches published by Eric J. Cantor.


Gene | 2001

Construction of a mini-intein fusion system to allow both direct monitoring of soluble protein expression and rapid purification of target proteins

Aihua Zhang; Sandra M Gonzalez; Eric J. Cantor; Shaorong Chong

Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.


Nucleic Acids Research | 2014

Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

Gregory J. S. Lohman; Yinhua Zhang; Alexander M. Zhelkovsky; Eric J. Cantor; Thomas C. Evans

Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.


Preparative Biochemistry & Biotechnology | 2001

Cleavage and purification of intein fusion proteins using the Streptococcus gordonii spex system.

Dawn M. Myscofski; Emma K. Dutton; Eric J. Cantor; Aihua Zhang; Dennis E. Hruby

A Gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase A1 were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.


bioRxiv | 2018

Optimization of Golden Gate assembly through application of ligation sequence-dependent fidelity and bias profiling

Potapov Vladimir; Jennifer Ong; Rebecca Kucera; Bradley W. Langhorst; Katharina Bilotti; John M. Pryor; Eric J. Cantor; Barry Canton; Thomas F. Knight; Thomas C. Evans; Gregory J. S. Lohman

Modern synthetic biology depends on the manufacture of large DNA constructs from libraries of genes, regulatory elements or other genetic parts. Type IIS restriction enzyme-dependent DNA assembly methods (e.g., Golden Gate) enable rapid one-pot, ordered, multi-fragment DNA assembly, facilitating the generation of high-complexity constructs. The order of assembly of genetic parts is determined by the ligation of flanking Watson-Crick base-paired overhangs. The ligation of mismatched overhangs leads to erroneous assembly, and the need to avoid such pairings has typically been accomplished by using small sets of empirically vetted junction pairs, limiting the number of parts that can be joined in a single reaction. Here, we report the use of a comprehensive method for profiling end-joining ligation fidelity and bias to predict highly accurate sets of connections for ligation-based DNA assembly methods. This data set allows quantification of sequence-dependent ligation efficiency and identification of mismatch-prone pairings. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions, and enabled efficient assembly of a lac cassette from up to 24-fragments in a single reaction. Application of the ligation fidelity profile to inform choice of junctions thus enables highly flexible assembly design, with >20 fragments in a single reaction.


ACS Synthetic Biology | 2018

Comprehensive profiling of four base overhang ligation fidelity by T4 DNA Ligase and application to DNA assembly

Vladimir Potapov; Jennifer Ong; Rebecca Kucera; Bradley W. Langhorst; Katharina Bilotti; John M. Pryor; Eric J. Cantor; Barry Canton; Thomas F. Knight; Thomas C. Evans; Gregory J. S. Lohman

Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies. Using sets of empirically vetted, high-accuracy junction pairs avoids this issue but limits the number of parts that can be joined in a single reaction. Here, we report the use of comprehensive end-joining ligation fidelity and bias data to predict high accuracy junction sets for Golden Gate assembly. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions and enabled accurate and efficient assembly of a lac cassette from up to 24-fragments in a single reaction.


BMC Proceedings | 2012

A fast solution to NGS library preparation with low nanogram DNA input.

Pingfang Liu; Gregory J. S. Lohman; Eric J. Cantor; Bradley W. Langhorst; Erbay Yigit; Lynne Apone; Daniela Munafo; Christine Sumner; Fiona J. Stewart; Thomas C. Evans; Nicole M. Nichols; Eileen T. Dimalanta; Theodore B. Davis

Next-generation sequencing (NGS) has significantly impacted human genetics, enabling a comprehensive characterization of human genome as well as better understanding of many genomic abnormalities. By delivering massive DNA sequences at unprecedented speed and cost, NGS promises to make personalized medicine a reality in the foreseeable future. To date, library construction with clinical samples has been a challenge, primarily due to the limited quantities of sample DNA available. To overcome this challenge, we have developed a fast library preparation method using novel NEBNext reagents and adaptors, including a new DNA polymerase that has been optimized to minimize GC bias. This method enables library construction from an amount of DNA as low as 5 ng, and can be used for both intact and fragmented DNA. Moreover, the workflow is compatible with multiple NGS platforms.


Nucleic Acids Research | 1998

Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step

Shaorong Chong; Geoffrey E. Montello; Aihua Zhang; Eric J. Cantor; Wei Liao; Ming-Qun Xu; Jack S. Benner


Protein Expression and Purification | 2001

Intein-Mediated Rapid Purification of Cre Recombinase

Eric J. Cantor; Shaorong Chong


Gene | 2005

Productive interaction of chaperones with substrate protein domains allows correct folding of the downstream GFP domain

Aihua Zhang; Eric J. Cantor; Tanya Barshevsky; Shaorong Chong


Genetic Engineering & Biotechnology News | 2018

Golden Gate Assembly Breakthrough: Method from New England Biolabs Allows More Fragments, Faster Assembly, and Higher Fidelity

Rebecca Kucera; Eric J. Cantor

Collaboration


Dive into the Eric J. Cantor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge