Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Drake is active.

Publication


Featured researches published by Eric J. Drake.


Nature | 2016

Structures of two distinct conformations of holo-non-ribosomal peptide synthetases

Eric J. Drake; Bradley R. Miller; Ce Shi; Jeffrey T. Tarrasch; Jesse A. Sundlov; C. Leigh Allen; Georgios Skiniotis; Courtney C. Aldrich; Andrew M. Gulick

Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.


ACS Chemical Biology | 2011

Structural Characterization and High-Throughput Screening of Inhibitors of PvdQ, an NTN Hydrolase Involved in Pyoverdine Synthesis

Eric J. Drake; Andrew M. Gulick

The human pathogen Pseudomonas aeruginosa produces a variety of virulence factors including pyoverdine, a nonribosomally produced peptide siderophore. The maturation pathway of the pyoverdine peptide is complex and provides a unique target for inhibition. Within the pyoverdine biosynthetic cluster is a periplasmic hydrolase, PvdQ, that is required for pyoverdine production. However, the precise role of PvdQ in the maturation pathway has not been biochemically characterized. We demonstrate herein that the initial module of the nonribosomal peptide synthetase PvdL adds a myristate moiety to the pyoverdine precursor. We extracted this acylated precursor, called PVDIq, from a pvdQ mutant strain and show that the PvdQ enzyme removes the fatty acid catalyzing one of the final steps in pyoverdine maturation. Incubation of PVDIq with crystals of PvdQ allowed us to capture the acylated enzyme and confirm through structural studies the chemical composition of the incorporated acyl chain. Finally, because inhibition of siderophore synthesis has been identified as a potential antibiotic strategy, we developed a high-throughput screening assay and tested a small chemical library for compounds that inhibit PvdQ activity. Two compounds that block PvdQ have been identified, and their binding within the fatty acid binding pocket was structurally characterized.


Infection and Immunity | 2014

Aerobactin Mediates Virulence and Accounts for Increased Siderophore Production under Iron-Limiting Conditions by Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae

Thomas A. Russo; Ruth Olson; Ulrike MacDonald; Daniel Metzger; Lauren M. Maltese; Eric J. Drake; Andrew M. Gulick

ABSTRACT Hypervirulent (hypermucoviscous) Klebsiella pneumoniae (hvKP) strains are an emerging variant of “classical” K. pneumoniae (cKP) that cause organ and life-threatening infection in healthy individuals. An understanding of hvKP-specific virulence mechanisms that enabled evolution from cKP is limited. Observations by our group and previously published molecular epidemiologic data led us to hypothesize that hvKP strains produced more siderophores than cKP strains and that this trait enhanced hvKP virulence. Quantitative analysis of 12 hvKP strains in iron-poor minimal medium or human ascites fluid showed a significant and distinguishing 6- to 10-fold increase in siderophore production compared to that for 14 cKP strains. Surprisingly, high-pressure liquid chromatography (HPLC)-mass spectrometry and characterization of the hvKP strains hvKP1, A1142, and A1365 and their isogenic aerobactin-deficient (ΔiucA) derivatives established that aerobactin accounted for the overwhelming majority of increased siderophore production and that this was not due to gene copy number. Further, aerobactin was the primary factor in conditioned medium that enhanced the growth/survival of hvKP1 in human ascites fluid. Importantly the ex vivo growth/survival of hvKP1 ΔiucA was significantly less than that of hvKP1 in human ascites fluid, and the survival of outbred CD1 mice challenged subcutaneously or intraperitoneally with hvKP1 was significantly less than that of mice challenged with hvKP1 ΔiucA. The lowest subcutaneous and intraperitoneal challenge inocula of 3 × 102 and 3.2 × 101 CFU, respectively, resulted in 100% mortality, demonstrating the virulence of hvKP1 and its ability to cause infection at a low dose. These data strongly support that aerobactin accounts for increased siderophore production in hvKP compared to cKP (a potential defining trait) and is an important virulence factor.


Journal of Biological Chemistry | 2007

The 1.8 Å Crystal Structure of PA2412, an MbtH-like Protein from the Pyoverdine Cluster of Pseudomonas aeruginosa

Eric J. Drake; Jin Cao; Jun Qu; Manish B. Shah; Robert M. Straubinger; Andrew M. Gulick

Many bacteria use nonribosomal peptide synthetase (NRPS) proteins to produce peptide antibiotics and siderophores. The catalytic domains of the NRPS proteins are usually linked in large multidomain proteins. Often, additional proteins are coexpressed with NRPS proteins that modify the NRPS peptide products, ensure the availability of substrate building blocks, or play a role in the import or export of the NRPS product. Many NRPS clusters include a small protein of ∼80 amino acids with homology to the MbtH protein of mycobactin synthesis in Mycobacteria tuberculosis; no function has been assigned to these proteins. Pseudomonas aeruginosa utilizes an NRPS cluster to synthesize the siderophore pyoverdine. The pyoverdine peptide contains a dihydroxyquinoline-based chromophore, as well as two formyl-N-hydroxyornithine residues, which are involved in iron binding. The pyoverdine cluster contains four modular NRPS enzymes and 10–15 additional proteins that are essential for pyoverdine production. Coexpressed with the pyoverdine synthetic enzymes is a 72-amino acid MbtH-like family member designated PA2412. We have determined the three-dimensional structure of the PA2412 protein and describe here the structure and the location of conserved regions. Additionally, we have further analyzed a deletion mutant of the PA2412 protein for growth and pyoverdine production. Our results demonstrate that PA2412 is necessary for the production or secretion of pyoverdine at normal levels. The PA2412 deletion strain is able to use exogenously produced pyoverdine, showing that there is no defect in the uptake or utilization of the iron-pyoverdine complex.


Biochemistry | 2010

Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis.

Eric J. Drake; Benjamin P. Duckworth; João Neres; Courtney C. Aldrich; Andrew M. Gulick

The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several nonribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown, and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented.


Journal of Biological Chemistry | 2016

Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

Bradley R. Miller; Eric J. Drake; Ce Shi; Courtney C. Aldrich; Andrew M. Gulick

Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.


Proteins | 2014

Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases

Bradley R. Miller; Jesse A. Sundlov; Eric J. Drake; Thomas A. Makin; Andrew M. Gulick

Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation‐PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C‐terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. Proteins 2014; 82:2691–2702.


ACS Chemical Biology | 2014

Identification of Inhibitors of PvdQ, an Enzyme Involved in the Synthesis of the Siderophore Pyoverdine.

Jacqueline Wurst; Eric J. Drake; Jimmy R. Theriault; Ivan Jewett; Lynn VerPlank; Jose R. Perez; Sivaraman Dandapani; Michelle Palmer; Samuel M. Moskowitz; Stuart L. Schreiber; Benito Munoz; Andrew M. Gulick

Pseudomonas aeruginosa produces the peptide siderophore pyoverdine, which is used to acquire essential Fe3+ ions from the environment. PvdQ, an Ntn hydrolase, is required for the biosynthesis of pyoverdine. PvdQ knockout strains are not infectious in model systems, suggesting that disruption of siderophore production via PvdQ inhibition could be exploited as a target for novel antibacterial agents, by preventing cells from acquiring iron in the low iron environments of most biological settings. We have previously described a high-throughput screen to identify inhibitors of PvdQ that identified inhibitors with IC50 values of ∼100 μM. Here, we describe the discovery of ML318, a biaryl nitrile inhibitor of PvdQ acylase. ML318 inhibits PvdQ in vitro (IC50 = 20 nM) by binding in the acyl-binding site, as confirmed by the X-ray crystal structure of PvdQ bound to ML318. Additionally, the PvdQ inhibitor is active in a whole cell assay, preventing pyoverdine production and limiting the growth of P. aeruginosa under iron-limiting conditions.


Acta Crystallographica Section D-biological Crystallography | 2006

Determination of the crystal structure of EntA, a 2,3-dihydro-2,3-dihydroxybenzoic acid dehydrogenase from Escherichia coli

Jesse A. Sundlov; Julie A. Garringer; Jill M. Carney; Albert S. Reger; Eric J. Drake; William L. Duax; Andrew M. Gulick

The Escherichia coli enterobactin synthetic cluster is composed of six proteins, EntA-EntF, that form the enterobactin molecule from three serine molecules and three molecules of 2,3-dihydroxybenzoic acid (DHB). EntC, EntB and EntA catalyze the three-step synthesis of DHB from chorismate. EntA is a member of the short-chain oxidoreductase (SCOR) family of proteins and catalyzes the final step in DHB synthesis, the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoic acid to DHB. The structure of EntA has been determined by multi-wavelength anomalous dispersion methods. Here, the 2.0 A crystal structure of EntA in the unliganded form is presented. Analysis of the structure in light of recent structural and bioinformatic analysis of other members of the SCOR family provides insight into the residues involved in cofactor and substrate binding.


Journal of Molecular Biology | 2008

Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin.

Eric J. Drake; Andrew M. Gulick

The pvcABCD operon of Pseudomonas aeruginosa encodes four proteins (PA2254, PA2255, PA2256, and PA2257) that form a cluster that is responsible for the synthesis of a cyclized isocyano derivative of tyrosine. These proteins, which were identified originally as being responsible for a step in the maturation of the chromophore of the peptide siderophore pyoverdine, have been identified recently as belonging to a family of proteins that produce small organic isonitriles. We report that strains harboring a disruption in the pvcA or pvcB genes are able to grow in iron-depleted conditions and to produce pyoverdine. Additionally, we have determined the three-dimensional crystal structures of PvcA and PvcB. The structure of PvcA demonstrates a novel enzyme architecture that is built upon a Rossmann fold. We have analyzed the sequence conservation of enzymes within this family and identified six conserved motifs. These regions of the protein cluster around a putative active site cavity. The structure of the PvcB protein confirms it is a member of the Fe2+/alpha-ketoglutarate-dependent oxygenase family of enzymes. The active site of PvcB is compared to the structures of other family members and suggests that a conformational change to order several loops will accompany the binding of ligands.

Collaboration


Dive into the Eric J. Drake's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge