Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Niesor is active.

Publication


Featured researches published by Eric J. Niesor.


Journal of Lipid Research | 2010

Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport

Eric J. Niesor; Christine Magg; Naoto Ogawa; Hiroshi Okamoto; Elisabeth von der Mark; Hugues Matile; Georg Schmid; Roger G. Clerc; Evelyne Chaput; Denise Blum-Kaelin; Walter Huber; Ralf Thoma; Philippe Pflieger; Makoto Kakutani; Daisuke Takahashi; Gregor Dernick; Cyrille Maugeais

The mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity. CETP-induced pre-β-HDL formation in vitro in human plasma was unchanged by dalcetrapib ≤3 µM and increased at 10 µM. A dose-dependent inhibition of pre-β-HDL formation by torcetrapib and anacetrapib (0.1 to 10 µM) suggested that dalcetrapib modulates CETP activity. In hamsters injected with [3H]cholesterol-labeled autologous macrophages, and given dalcetrapib (100 mg twice daily), torcetrapib [30 mg once daily (QD)], or anacetrapib (30 mg QD), only dalcetrapib significantly increased fecal elimination of both [3H]neutral sterols and [3H]bile acids, whereas all compounds increased plasma HDL-[3H]cholesterol. These data suggest that modulation of CETP activity by dalcetrapib does not inhibit CETP-induced pre-β-HDL formation, which may be required to increase reverse cholesterol transport.


Circulation-cardiovascular Genetics | 2015

Pharmacogenomic Determinants of the Cardiovascular Effects of Dalcetrapib

Jean-Claude Tardif; Eric Rhéaume; Louis-Philippe Lemieux Perreault; Jean Grégoire; Yassamin Feroz Zada; Géraldine Asselin; Sylvie Provost; Amina Barhdadi; David Rhainds; Philippe L. L’Allier; Reda Ibrahim; Ruchi Upmanyu; Eric J. Niesor; Renée Benghozi; Gabriela Suchankova; Fouzia Laghrissi-Thode; Marie-Claude Guertin; Anders G. Olsson; Ian Mongrain; Gregory G. Schwartz; Marie-Pierre Dubé

Background—Dalcetrapib did not improve clinical outcomes, despite increasing high-density lipoprotein cholesterol by 30%. These results differ from other evidence supporting high-density lipoprotein as a therapeutic target. Responses to dalcetrapib may vary according to patients’ genetic profile. Methods and Results—We conducted a pharmacogenomic evaluation using a genome-wide approach in the dal-OUTCOMES study (discovery cohort, n=5749) and a targeted genotyping panel in the dal-PLAQUE-2 imaging trial (support cohort, n=386). The primary endpoint for the discovery cohort was a composite of cardiovascular events. The change from baseline in carotid intima-media thickness on ultrasonography at 6 and 12 months was evaluated as supporting evidence. A single-nucleotide polymorphism was found to be associated with cardiovascular events in the dalcetrapib arm, identifying the ADCY9 gene on chromosome 16 (rs1967309; P=2.41×10–8), with 8 polymorphisms providing P<10–6 in this gene. Considering patients with genotype AA at rs1967309, there was a 39% reduction in the composite cardiovascular endpoint with dalcetrapib compared with placebo (hazard ratio, 0.61; 95% confidence interval, 0.41–0.92). In patients with genotype GG, there was a 27% increase in events with dalcetrapib versus placebo. Ten single-nucleotide polymorphism in the ADCY9 gene, the majority in linkage disequilibrium with rs1967309, were associated with the effect of dalcetrapib on intima-media thickness (P<0.05). Marker rs2238448 in ADCY9, in linkage disequilibrium with rs1967309 (r2=0.8), was associated with both the effects of dalcetrapib on intima-media thickness in dal-PLAQUE-2 (P=0.009) and events in dal-OUTCOMES (P=8.88×10–8; hazard ratio, 0.67; 95% confidence interval, 0.58–0.78). Conclusions—The effects of dalcetrapib on atherosclerotic outcomes are determined by correlated polymorphisms in the ADCY9 gene. Clinical Trial Information—URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00658515 and NCT01059682


European Heart Journal | 2014

The effect of cholesteryl ester transfer protein inhibition on lipids, lipoproteins, and markers of HDL function after an acute coronary syndrome: the dal-ACUTE randomized trial

Kausik K. Ray; Marc Ditmarsch; David Kallend; Eric J. Niesor; Gabriela Suchankova; Ruchi Upmanyu; Judith Anzures-Cabrera; Valerie Lehnert; Meike Pauly-Evers; Ingar Holme; Josef Stasek; Maarten W. J. van Hessen; Peter Jones

AIMS The effects of cholesteryl ester transfer protein (CETP) inhibition on lipids, inflammation, and markers of high-density lipoprotein (HDL) function, following an acute coronary syndrome (ACS), are unknown. METHODS AND RESULTS The dal-ACUTE study randomized 300 patients (1 : 1) to dalcetrapib 600 mg/day or placebo within 1 week of an ACS. The primary endpoint was per cent change in HDL-cholesterol (HDL-C) after 4 weeks. Secondary endpoints included apolipoprotein levels, markers of HDL function, and inflammation. Dalcetrapib treatment increased HDL-C and apolipoprotein A1 by 33.7 and 11.8%, respectively (both P < 0.001) and total cholesterol efflux by 9.5% (P = 0.003) after 4 weeks, principally via an increase in non-ATP-binding cassette transporter (ABC) A1-mediated efflux, without statistically significant changes in pre-β1-HDL levels. The increase in total efflux with dalcetrapib correlated most strongly with increases in apolipoprotein A1 and HDL-C (r = 0.46 and 0.43, respectively) rather than the increase in pre-β1-HDL (r = 0.32). Baseline and on-treatment ABCA1-mediated efflux correlated most strongly with pre-β1-HDL levels; in contrast, non-ABCA1-mediated efflux correlated better with apolipoprotein A1 and HDL-C levels. CONCLUSIONS High-density lipoprotein raised through CETP inhibition with dalcetrapib improves cholesterol efflux, principally via a non-ABCA1-mediated pathway. While HDL-C was increased by one-third, apolipoprotein A1 and total efflux were increased only by one-tenth, supporting the concept of dissociation between improvements in HDL function and HDL-C levels, which may be of relevance to ongoing trials and the development of therapeutic interventions targeting HDL.


Journal of Hypertension | 2010

Mechanisms underlying off-target effects of the cholesteryl ester transfer protein inhibitor torcetrapib involve L-type calcium channels.

Roger G. Clerc; Andrea Stauffer; Franziska Weibel; Emmanuelle Hainaut; Anne Perez; Jean-Christophe Hoflack; Agnès Bénardeau; Philippe Pflieger; Jose Mr Garriz; John W. Funder; Alessandro M Capponi; Eric J. Niesor

Objective The increased mortality observed with the cholesteryl ester transfer protein inhibitor torcetrapib is partly due to increased aldosterone production and blood pressure. The mechanisms underlying these effects were investigated. Methods Cytochrome P450 subunit 11B2 (aldosterone synthase), extracellular signal-regulated kinase (p44/42) and voltage-gated Ca2+channel alpha subunit mRNA profiling, aldosterone production, cytosolic calcium and RNA interference were assessed in adrenocarcinoma human cells (H295R). Telemetry was conducted in spontaneously hypertensive rats. Results Torcetrapib and angiotensin II (Ang II) but not dalcetrapib (a structurally different cholesteryl ester transfer protein inhibitor) elevated both cytochrome P450 subunit 11B2 mRNA and aldosterone production in H295R cells at 6 h. At days 1–5, torcetrapib produced a sustained increase of cytochrome P450 subunit 11B2 mRNA, unlike Ang II. Although torcetrapib and Ang II potentiated the effect of 25-OH cholesterol and raised pregnenolone levels, torcetrapib increased neither cytosolic Ca2+ at 5 min nor extracellular signal-regulated kinase1/2 phosphorylation, suggesting initially divergent pathways. Unlike Ang II, torcetrapib steroidogenesis was not affected by Ang II type 1 receptor antagonism or voltage-gated T-type Ca2+ channel antagonism, but was blocked by several L-type Ca2+channel antagonists. In unbiased genome-wide screening, Ang II and torcetrapib modulated an overlapping but distinct set of genes in H295R cells. Torcetrapib, but not Ang II, upregulated mRNA levels of the L-type Ca2+ channel alpha 1C subunit. In spontaneously hypertensive rat, torcetrapib had a potent hypertensive effect mediated by the L-type Ca2+ channel. Conclusion The unique steroidogenic and hypertensive side effects of torcetrapib may be linked and involve voltage-gated L-type Ca2+ channels. Structurally unrelated cholesteryl ester transfer protein inhibitors such as dalcetrapib do not share this effect.


British Journal of Pharmacology | 2009

Dalcetrapib: no off-target toxicity on blood pressure or on genes related to the renin-angiotensin-aldosterone system in rats.

E. S. G. Stroes; J. J. P. Kastelein; A. Benardeau; O. Kuhlmann; D. Blum; L. A. Campos; R. G. Clerc; Eric J. Niesor

Background and purpose:  The association between torcetrapib and its off‐target effects on blood pressure suggested a possible class‐specific effect. The effects of dalcetrapib (RO4607381/JTT‐705) and torcetrapib on haemodynamics and the renin‐angiotensin‐aldosterone system (RAAS) were therefore assessed in a rat model.


Current Pharmaceutical Design | 2001

The Nuclear Receptors FXR and LX alpha Potential Targets for the Development of Drugs Affecting Lipid Metabolism and Neoplastic Diseases

Eric J. Niesor; Jean Flach; Isabelle Lopes-Antoni; Anne Perez; Craig Leigh Bentzen

The orphan nuclear receptors FXR and LXRalpha have become challenging targets for the discovery of new therapeutic agents. Bile acids and hydroxysterol intermediates are the respective natural ligands of these two structurally and functionally closely related receptors. Both FXR and LXRalpha; are thought to play a major role in the control of cholesterol catabolism by regulating the expression of cholesterol 7alpha-hydroxylase, the rate limiting enzyme of bile acid synthesis. Reverse cholesterol transport might also be affected by FXR and LXR since they control the expression of PLTP and CETP, two proteins involved in the transfer of phospholipid, cholesterol and cholesteryl esters among plasma lipoproteins. A new class of potent synthetic activators of FXR, the 1,1-bisphosphonate esters, has been discovered which up regulate the Intestinal Bile Acid Binding Protein gene (I-BABP) as demonstrated for chenodeoxycholic acid, however there are no known synthetic activators yet identified for LXRalpha. The evaluation of FXR as a potential target for the development of drugs affecting plasma cholesterol can take advantage of the fact that the activators of FXR (farnesol, bile acids and the 1,1-bisphosphonate esters) have been studied in various in vitro and in vivo models. Administration of chenodeoxycholic acid to animals and man did not result in the increase in plasma cholesterol expected from a decrease in cholesterol 7alpha-hydroxylase expression. Like farnesol, the 1,1-bisphosphonate esters increase the rate of degradation of HMGCoA reductase and have the unexpected property of inducing hypocholesterolemia in normal animals. The natural and synthetic FXR agonists trigger differentiation, inhibit cell proliferation and are potent inducers of apoptosis. The 1,1-bisphosphonate ester SR-45023A (Apomine) is presently being developed as an antineoplastic drug.


Journal of Clinical Lipidology | 2013

Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients.

Guido Franceschini; Elda Favari; Laura Calabresi; Sara Simonelli; Alighiero Bondioli; Maria Pia Adorni; F. Zimetti; Monica Gomaraschi; Karine Coutant; Simona Rossomanno; Eric J. Niesor; Franco Bernini; Renée Benghozi

BACKGROUND The effectiveness of therapies that raise high-density lipoprotein cholesterol (HDL-C) to lower cardiovascular disease risk is currently under debate, and further research into the relationship between HDL-C and function is required. OBJECTIVE o investigate whether 2 established HDL-C-raising therapies had differential effects on parameters of high-density lipoprotein (HDL) quality and function, such as HDL particle profile and cholesterol efflux capacity (CEC), in patients with dyslipidemia. METHODS AND RESULTS Sixty-six patients with dyslipidemia, 24 with low HDL-C levels (<40 mg/dL) and 42 with normal HDL-C levels (40-59 mg/dL), were treated for 6 weeks with fenofibrate (160 mg/d) or extended-release (ER) niacin (0.5 g/d for 3 weeks, then 1 g/d) with 4 weeks of washout between treatments. Lipoprotein particle size distribution was determined using nuclear magnetic resonance, and pathway-specific serum CECs were assessed in J774 macrophages, hepatoma, and Chinese hamster ovary-human adenosine triphosphate-binding cassette transporter G1 cells. Comparable increases in HDL-C and apolipoprotein A-I levels were seen with fenofibrate and ER niacin. There was a shift toward larger HDL, predominantly to medium-size HDL particles for fenofibrate (+209%) and to large HDL particles for ER niacin (+221%). Minor changes in serum CECs were observed with fenofibrate and ER niacin for all the efflux pathways measured. Small increases in plasma cholesteryl ester transfer protein and lecithin: cholesterol acyltransferase concentrations, and decreases in cholesteryl ester transfer protein activity were seen with both drugs. CONCLUSIONS Fenofibrate and ER niacin increased plasma HDL-C level similarly, but modulated HDL particle size distribution differently; however, these changes did not result in differential effects on serum CECs.


Atherosclerosis | 1997

SR-12813 lowers plasma cholesterol in beagle dogs by decreasing cholesterol biosynthesis

Theo Berkhout; Helen M. Simon; Brian Jackson; John Yates; Nigel J. Pearce; Pieter H. E. Groot; Craig Bentzen; Eric J. Niesor; William Kerns; Keith E. Suckling

SR-12813 inhibits cholesterol biosynthesis in Hep G2 cells via an enhanced degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Here we also show that SR-12813 inhibits cholesterol biosynthesis in vivo. A sterol balance study was performed in normolipemic beagle dogs. The dogs were given SR-12813 orally at dosages of 10 and 25 mg/kg/day for a period of 9 days. After 7 days plasma cholesterol was decreased by 15% in the 10 mg/kg/day group and by 19% in the 25 mg/kg/day group. Using a dual isotope technique no effects on intestinal cholesterol absorption were observed. The sterol balance indicated that endogenous synthesis of cholesterol was reduced by 23% in the 10 mg/kg/day group and by 37% in the 25 mg/kg/day group. Plasma lathosterol-cholesterol levels in dogs treated with 25 mg/kg/day SR-12813 were reduced by 56%, confirming a reduction of the cholesterol biosynthesis. Treatment with SR-12813 or the HMG-CoA reductase inhibitor lovastatin resulted in a large decrease in low density lipoprotein (LDL) cholesterol. It is concluded that SR-12813 reduces cholesterol biosynthesis in the dog model which results in a decrease of bile acid excretion, cholesterol excretion and plasma cholesterol level. The in vivo profile of SR-12813 is very similar to that of direct HMG-CoA reductase inhibitors, although the mode of action of the compound is unique.


Atherosclerosis | 2011

Effect of dalcetrapib, a CETP modulator, on non-cholesterol sterol markers of cholesterol homeostasis in healthy subjects.

Eric J. Niesor; Evelyne Chaput; Andreas Staempfli; Denise Blum; Michael Derks; David Kallend

OBJECTIVE Subjects with high HDL-C show elevated plasma markers of cholesterol absorption and reduced markers of cholesterol synthesis. We evaluated the effect of dalcetrapib, a cholesteryl ester transfer protein modulator, on markers of cholesterol homeostasis in healthy subjects. METHODS Dalcetrapib was administered daily with or without ezetimibe in a randomized, open-label, crossover study in 22 healthy subjects over three 7-day periods: dalcetrapib 900 mg, ezetimibe 10mg, dalcetrapib 900 mg plus ezetimibe 10mg. Plasma non-cholesterol sterols lathosterol and desmosterol (cholesterol synthesis markers) and campesterol, β-sitosterol and cholestanol (intestinal cholesterol absorption markers) were measured. A hamster model was used to compare the effect of dalcetrapib and torcetrapib with or without ezetimibe on these markers and determine the effect of dalcetrapib on cholesterol absorption. RESULTS Dalcetrapib increased campesterol, β-sitosterol, and cholestanol by 27% (p = 0.001), 32% (p < 0.001), and 12% (p = 0.03), respectively, in man (non-cholesterol sterol/cholesterol ratio). Dalcetrapib+ezetimibe reduced campesterol by 11% (p = 0.02); β-sitosterol and cholestanol were unaffected. Lathosterol and desmosterol were unchanged with dalcetrapib, but both increased with ezetimibe alone (56-148%, p < 0.001) and with dalcetrapib + ezetimibe (32-38%, p < 0.001). In hamsters, dalcetrapib and torcetrapib increased HDL-C by 49% (p = 0.04) and 72% (p = 0.003), respectively. Unlike torcetrapib, dalcetrapib altered cholesterol homeostasis towards increased markers of cholesterol absorption; cholesterol synthesis markers were unaffected by either treatment. Dalcetrapib did not change plasma (3)H-cholesterol level but increased (3)H-cholesterol in plasma HDL vs non-HDL, after oral dosing of labeled cholesterol. CONCLUSION Dalcetrapib specifically increased markers of cholesterol absorption, most likely reflecting nascent HDL lipidation by intestinal ABCA1, without affecting markers of synthesis.


Biochimica et Biophysica Acta | 2013

Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP.

Cyrille Maugeais; Anne Perez; Elisabeth von der Mark; Christine Magg; Philippe Pflieger; Eric J. Niesor

Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13.

Collaboration


Dive into the Eric J. Niesor's collaboration.

Top Co-Authors

Avatar

Cyrille Maugeais

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge