Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric J. Steig is active.

Publication


Featured researches published by Eric J. Steig.


Nature | 2009

Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year

Eric J. Steig; David P. Schneider; Scott Rutherford; Michael E. Mann; Josefino C. Comiso; Drew T. Shindell

Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 °C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.


Earth Surface Processes and Landforms | 1996

ESTIMATING RATES OF DENUDATION USING COSMOGENIC ISOTOPE ABUNDANCES IN SEDIMENT

Paul R. Bierman; Eric J. Steig

We propose, as a testable hypothesis, a basin-scale approach for interpreting the abundance of in situ produced cosmogenic isotopes, an approach which considers explicitly both the isotope and sediment flux through a drainage basin. Unlike most existing models, which are appropriate for evaluating in situ produced cosmogenic isotope abundance at discrete points on Earth’s surface, our model is designed for interpreting isotope abundance in sediment. Because sediment is a mixture of materials, in favourable cases derived from throughout a drainage basin, we suggest that measured isotope abundances may reflect spatially averaged rates of erosion. We investigate the assumptions and behaviour of our model and conclude that it could provide geomorphologists with a relatively simple means by which to constrain the rate of landscape evolution if a basin is in isotopic steady state and if sampled sediments are well mixed.


Global Biogeochemical Cycles | 2000

On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period

Edward J. Brook; Susan Harder; Jeffrey P. Severinghaus; Eric J. Steig; Cara M. Sucher

We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200–300 ppb over time periods of 100–300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.


Journal of Climate | 2008

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*

Valerie Masson-Delmotte; Shugui Hou; Alexey Ekaykin; Jean Jouzel; Alberto J. Aristarain; Ronaldo T. Bernardo; David H. Bromwich; Olivier Cattani; Marc Delmotte; S. Falourd; Massimo Frezzotti; L. Genoni; Elisabeth Isaksson; Amaelle Landais; Michiel M. Helsen; Gundula Hoffmann; J. Lopez; Vin Morgan; Hideaki Motoyama; David Noone; H. Oerter; J. R. Petit; A. Royer; Ryu Uemura; Gavin A. Schmidt; Elisabeth Schlosser; Jefferson Cardia Simões; Eric J. Steig; Barbara Stenni; M. Stievenard

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including “isotopic” models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.


Geografiska Annaler Series A-physical Geography | 2000

Wisconsinan and Holocene Climate History from an Ice Core at Taylor Dome, Western Ross Embayment, Antarctica

Eric J. Steig; David Leroy Morse; Edwin D. Waddington; Minze Stuiver; Pieter Meiert Grootes; Paul Andrew Mayewski; Mark S. Twickler; Sallie I. Whitlow

Geochemical data and geophysical measurements from a 554‐m ice‐core from Taylor Dome, East Antarctica, provide the basis for climate reconstruction in the western Ross Embayment through the entire Wisconsinan and Holocene. In comparison with ice cores from central East and West Antarctica, Taylor Dome shows greater variance of temperature, snow accumulation, and aerosol concentrations, reflecting significant variability in atmospheric circulation and air mass moisture content. Extreme aridity during the last glacial maximum at Taylor Dome reflects both colder temperatures and a shift in atmospheric circulation patterns associated with the advance of the Ross Sea ice sheet and accounts for regional alpine glacier retreats and high lake levels in the Dry Valleys. Inferred relationships between spatial accumulation gradients and ice sheet configuration indicate that advance of the Ross Sea ice sheet began in late marine isotope stage 5 or early stage 4. Precise dating of the Taylor Dome core achieved by trace‐gas correlation with central Greenland ice cores shows that abrupt deglacial warming at Taylor Dome was near‐synchronous with the ∼14.6 ka warming in central Greenland and lags the general warming trend in other Antarctic ice cores by at least 3000 years. Deglacial warming was following by a warm interval and transient cooling between 14.6 and 11.7 ka, synchronous with the Bølling/Allerød warming and Younger Dryas cooling events in central Greenland, and out of phase with the Antarctic Cold Reversal recorded in the Byrd (West Antarctica) ice core. Rapid climate changes during marine isotope stages 4 and 3 at Taylor Dome are similar in character to, and may be in phase with, the Northern Hemisphere stadial–interstadial (Dansgaard–Oeschger) events. Results from Taylor Dome illustrate the importance of obtaining ice cores from multiple Antarctic sites, to provide wide spatial coverage of past climate and ice dynamics.


Science | 2014

Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability

Pierre Dutrieux; Jan De Rydt; Adrian Jenkins; Paul R. Holland; Ho Kyung Ha; Sang Hoon Lee; Eric J. Steig; Qinghua Ding; E. Povl Abrahamsen; Michael Schröder

Cold Glacier Growth Pine Island Glacier in Antarctica has thinned significantly during the last two decades and has provided a measurable contribution to sea-level rise as a result. Both glacier dynamics and climate are thought to be responsible for thinning, but exactly how they influence the glacier are incompletely known. Dutrieux et al. (p. 174, published online 2 January) provide another layer of detail to our understanding of the process through observations of ocean temperatures in the surrounding waters. The thermocline adjacent in the sea adjacent to the glacier calving front (where ice is discharged) lowered by 250 meters in the austral summer of 2012. This change exposed the bottom of the ice shelf to colder surface waters rather than to the warmer, deeper layer, thereby reducing heat transfer from the ocean to the overlying ice and decreasing basal melting of the ice by more than 50% compared to 2010. Those 2012 ocean conditions were partly caused by a strong La Niña event, thus illustrating how important atmospheric variability is for regulating how the Antarctic Ice Sheet responds to climate change. Colder surface ocean waters decreased the rate of melting under the Pine Island Glacier ice shelf in 2012. Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.


Nature | 2002

Millennial-scale storminess variability in the northeastern United States during the Holocene epoch

Anders Noren; Paul R. Bierman; Eric J. Steig; Andrea Lini; John Southon

For the purpose of detecting the effects of human activities on climate change, it is important to document natural change in past climate. In this context, it has proved particularly difficult to study the variability in the occurrence of extreme climate events, such as storms with exceptional rainfall. Previous investigations have established storm chronologies using sediment cores from single lakes, but such studies can be susceptible to local environmental bias. Here we date terrigenous inwash layers in cores from 13 lakes, which show that the frequency of storm-related floods in the northeastern United States has varied in regular cycles during the past 13,000 years (13 kyr), with a characteristic period of about 3 kyr. Our data show four peaks in storminess during the past 14 kyr, approximately 2.6, 5.8, 9.1 and 11.9 kyr ago. This pattern is consistent with long-term changes in the average sign of the Arctic Oscillation, suggesting that modulation of this dominant atmospheric mode may account for a significant fraction of Holocene climate variability in North America and Europe.


Nature | 2013

Onset of deglacial warming in West Antarctica driven by local orbital forcing

T. J. Fudge; Eric J. Steig; Bradley R. Markle; Spruce W. Schoenemann; Qinghua Ding; Kendrick C. Taylor; Joseph R. McConnell; Edward J. Brook; Todd Sowers; James W. C. White; Richard B. Alley; Hai Cheng; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Kurt M. Cuffey; Jon Edwards; R. Lawrence Edwards; Ross Edwards; John M. Fegyveresi; David G. Ferris; Jay A. Johnson; Geoffrey M. Hargreaves; James E. Lee; Olivia J. Maselli; William P. Mason; Kenneth C. McGwire; Logan E. Mitchell; Nicolai B. Mortensen; Peter D. Neff

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.


Journal of Climate | 2012

Influence of the Tropics on the Southern Annular Mode

Qinghua Ding; Eric J. Steig; David S. Battisti; John M. Wallace

AbstractPerturbations in the southern annular mode (SAM) are shown to be significantly correlated with SST anomalies in the central tropical Pacific during austral winter and SST anomalies in the eastern tropical Pacific during austral summer. The SAM signature in the Pacific sector resembles a tropically forced Rossby wave train, the so-called Pacific–South American pattern, while the signature in the Indian Ocean sector is a zonally elongated meridional dipole. Thus, the SAM contains strong zonally asymmetric variability and tends to behave differently in the Eastern and Western Hemispheres, with internal dynamics prevailing in the Indian Ocean sector and the forced response to tropical SST anomalies exerting a strong influence in the Pacific sector. The tropically forced component of the SAM in the Pacific sector is related to a geographically fixed active Rossby wave source to the east of Australia within the core of the subtropical jet. In addition to the well-documented positive trend in summer, the...


Science | 2009

Anthropogenic Impacts on Nitrogen Isotopes of Ice-Core Nitrate

Meredith G. Hastings; Julia C. Jarvis; Eric J. Steig

The isotopic composition of nitrogen in nitrate deposited in Greenland has changed markedly over the past 150 years. A strong, unambiguous negative trend is found in the nitrogen isotopic composition (δ15N) of nitrate over the industrial period, on the basis of a 100-meter ice core from Summit, Greenland. This record indicates that ice-core nitrate reflects changes in nitrogen oxide (NOx) source emissions and that anthropogenic emissions of NOx have resulted in a 12 per mil decline in δ15N of atmospheric nitrate from preindustrial values to present. Variations in the isotopic composition of nitrate may affect the interpretation of other records of environmental change that are affected by atmospheric nitrate.

Collaboration


Dive into the Eric J. Steig's collaboration.

Top Co-Authors

Avatar

Edward J. Brook

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Schneider

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard Conway

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Qinghua Ding

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge