Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric K. Moses is active.

Publication


Featured researches published by Eric K. Moses.


Biological Psychiatry | 2012

High dimensional endophenotype ranking in the search for major depression risk genes

David C. Glahn; Joanne E. Curran; Anderson M. Winkler; Ma Carless; Jack W. Kent; Jac Charlesworth; Matthew P. Johnson; Harald H H Göring; Shelley A. Cole; Thomas D. Dyer; Eric K. Moses; Rene L. Olvera; Peter Kochunov; Ravi Duggirala; Peter T. Fox; Laura Almasy; John Blangero

BACKGROUND Despite overwhelming evidence that major depression is highly heritable, recent studies have localized only a single depression-related locus reaching genome-wide significance and have yet to identify a causal gene. Focusing on family-based studies of quantitative intermediate phenotypes or endophenotypes, in tandem with studies of unrelated individuals using categorical diagnoses, should improve the likelihood of identifying major depression genes. However, there is currently no empirically derived statistically rigorous method for selecting optimal endophentypes for mental illnesses. Here, we describe the endophenotype ranking value, a new objective index of the genetic utility of endophenotypes for any heritable illness. METHODS Applying endophenotype ranking value analysis to a high-dimensional set of over 11,000 traits drawn from behavioral/neurocognitive, neuroanatomic, and transcriptomic phenotypic domains, we identified a set of objective endophenotypes for recurrent major depression in a sample of Mexican American individuals (n = 1122) from large randomly selected extended pedigrees. RESULTS Top-ranked endophenotypes included the Beck Depression Inventory, bilateral ventral diencephalon volume, and expression levels of the RNF123 transcript. To illustrate the utility of endophentypes in this context, each of these traits were utlized along with disease status in bivariate linkage analysis. A genome-wide significant quantitative trait locus was localized on chromsome 4p15 (logarithm of odds = 3.5) exhibiting pleiotropic effects on both the endophenotype (lymphocyte-derived expression levels of the RNF123 gene) and disease risk. CONCLUSIONS The wider use of quantitative endophenotypes, combined with unbiased methods for selecting among these measures, should spur new insights into the biological mechanisms that influence mental illnesses like major depression.


The Journal of Clinical Endocrinology and Metabolism | 2010

Chemerin, a novel adipokine in the regulation of angiogenesis

Kiymet Bozaoglu; Joanne E. Curran; Claire J. Stocker; Mohamed S. Zaibi; David Segal; Nicky Konstantopoulos; Shona Morrison; Melanie A. Carless; Thomas D. Dyer; Shelley A. Cole; Harald H H Göring; Eric K. Moses; Ken Walder; Michael A. Cawthorne; John Blangero; Jeremy B. M. Jowett

CONTEXT Chemerin is a new adipokine associated with obesity and the metabolic syndrome. Gene expression levels of chemerin were elevated in the adipose depots of obese compared with lean animals and was markedly elevated during differentiation of fibroblasts into mature adipocytes. OBJECTIVE The objective of the study was to identify factors that affect the regulation and potential function of chemerin using a genetics approach. DESIGN, SETTING, PATIENTS, AND INTERVENTION Plasma chemerin levels were measured in subjects from the San Antonio Family Heart Study, a large family-based genetic epidemiological study including 1354 Mexican-American individuals. Individuals were randomly sampled without regard to phenotype or disease status. MAIN OUTCOME MEASURES A genome-wide association analysis using 542,944 single-nucleotide polymorphisms in a subset of 523 of the same subjects was undertaken. The effect of chemerin on angiogenesis was measured using human endothelial cells and interstitial cells in coculture in a specially formulated medium. RESULTS Serum chemerin levels were found to be highly heritable (h(2) = 0.25; P = 1.4 x 10(-9)). The single-nucleotide polymorphism showing strongest evidence of association (rs347344; P = 1.4 x 10(-6)) was located within the gene encoding epithelial growth factor-like repeats and discoidin I-like domains 3, which has a known role in angiogenesis. Functional angiogenesis assays in human endothelial cells confirmed that chemerin significantly mediated the formation of blood vessels to a similar extent as vascular endothelial growth factor. CONCLUSION Here we demonstrate for the first time that plasma chemerin levels are significantly heritable and identified a novel role for chemerin as a stimulator of angiogenesis.


Obstetrics & Gynecology | 2010

Inherited thrombophilia polymorphisms and pregnancy outcomes in Nulliparous women

Joanne Said; John R. Higgins; Eric K. Moses; Susan P. Walker; Anthony J. Borg; Paul Monagle; Shaun P. Brennecke

OBJECTIVE: To estimate the association between five commonly inherited thrombophilia polymorphisms and adverse pregnancy outcomes in women who had no prior history of adverse pregnancy outcomes or personal or family history of venous thromboembolism. METHODS: Healthy nulliparous women (n=2,034) were recruited to this prospective cohort study before 22 weeks of gestation. Genotyping for factor V Leiden, prothrombin gene mutation, methylenetetrahydrofolate reductase enzyme (MTHFR) C677T, MTHFR A1298C, and thrombomodulin polymorphism was performed. Clinicians caring for women were blinded to the results of thrombophilia tests. The primary composite outcome was the development of severe preeclampsia, fetal growth restriction, placental abruption, stillbirth, or neonatal death. RESULTS: Complete molecular results and pregnancy outcome data were available in 1,707 women. These complications were experienced by 136 women (8.0%). Multivariable logistic regression demonstrated two statistically significant findings. Women who carried the prothrombin gene mutation had an odds ratio of 3.58 (95% confidence interval [CI] 1.20–10.61, P=.02) for the development of the composite primary outcome. Homozygous carriers of the MTHFR 1298 polymorphism had an odds ratio of 0.26 (95% CI 0.08–0.86, P=.03). None of the other polymorphisms studied showed a significant association with the development of the primary outcome in this cohort of women. CONCLUSION: Prothrombin gene mutation confers an increased risk for the development of adverse pregnancy outcomes in otherwise asymptomatic, nulliparous women, whereas homozygosity for MTHFR 1298 may protect against these complications. The majority of asymptomatic women who carry an inherited thrombophilia polymorphism have a successful pregnancy outcome. LEVEL OF EVIDENCE: II


Nature Genetics | 2015

Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

Matthew H. Law; D. Timothy Bishop; Jeffrey E. Lee; Myriam Brossard; Nicholas G. Martin; Eric K. Moses; Fengju Song; Jennifer H. Barrett; Rajiv Kumar; Douglas F. Easton; Paul Pharoah; Anthony J. Swerdlow; Katerina P. Kypreou; John C. Taylor; Mark Harland; Juliette Randerson-Moor; Lars A. Akslen; Per Arne Andresen; M.-F. Avril; Esther Azizi; Giovanna Bianchi Scarrà; Kevin M. Brown; Tadeusz Dębniak; David L. Duffy; David E. Elder; Shenying Fang; Eitan Friedman; Pilar Galan; Paola Ghiorzo; Elizabeth M. Gillanders

Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10−8), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.


BMC Medical Genomics | 2010

Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes

Jac Charlesworth; Joanne E. Curran; Matthew P. Johnson; Harald H H Göring; Thomas D. Dyer; Vincent P. Diego; Jack W. Kent; Michael C. Mahaney; Laura Almasy; Jean W. MacCluer; Eric K. Moses; John Blangero

BackgroundThis investigation offers insights into system-wide pathological processes induced in response to cigarette smoke exposure by determining its influences at the gene expression level.MethodsWe obtained genome-wide quantitative transcriptional profiles from 1,240 individuals from the San Antonio Family Heart Study, including 297 current smokers. Using lymphocyte samples, we identified 20,413 transcripts with significantly detectable expression levels, including both known and predicted genes. Correlation between smoking and gene expression levels was determined using a regression model that allows for residual genetic effects.ResultsWith a conservative false-discovery rate of 5% we identified 323 unique genes (342 transcripts) whose expression levels were significantly correlated with smoking behavior. These genes showed significant over-representation within a range of functional categories that correspond well with known smoking-related pathologies, including immune response, cell death, cancer, natural killer cell signaling and xenobiotic metabolism.ConclusionsOur results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. This is the largest in vivo transcriptomic epidemiological study of smoking to date and reveals the significant and comprehensive influence of cigarette smoke, as an environmental variable, on the expression of genes. The central importance of this manuscript is to provide a summary of the relationships between gene expression and smoking in this exceptionally large cross-sectional data set.


Physics of Plasmas | 2012

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

H. F. Robey; T. R. Boehly; Peter M. Celliers; Jon H. Eggert; Damien G. Hicks; R.F. Smith; R. Collins; M. W. Bowers; K. Krauter; P. S. Datte; D. H. Munro; J. L. Milovich; O. S. Jones; P. Michel; C. A. Thomas; R.E. Olson; Stephen M. Pollaine; R. P. J. Town; S. W. Haan; D. A. Callahan; D. S. Clark; J. Edwards; J. L. Kline; S. N. Dixit; M. B. Schneider; E. L. Dewald; K. Widmann; J. D. Moody; T. Döppner; H.B. Radousky

Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results ...


PLOS ONE | 2012

Genome-Wide Association Scan Identifies a Risk Locus for Preeclampsia on 2q14, Near the Inhibin, Beta B Gene

Matthew P. Johnson; Shaun P. Brennecke; Christine East; Harald H H Göring; Jack W. Kent; Thomas D. Dyer; Joanne Said; Linda Tømmerdal Roten; Ann-Charlotte Iversen; Lawrence J. Abraham; Seppo Heinonen; Eero Kajantie; Juha Kere; Katja Kivinen; Anneli Pouta; Hannele Laivuori; Rigmor Austgulen; John Blangero; Eric K. Moses

Elucidating the genetic architecture of preeclampsia is a major goal in obstetric medicine. We have performed a genome-wide association study (GWAS) for preeclampsia in unrelated Australian individuals of Caucasian ancestry using the Illumina OmniExpress-12 BeadChip to successfully genotype 648,175 SNPs in 538 preeclampsia cases and 540 normal pregnancy controls. Two SNP associations (rs7579169, p = 3.58×10−7, OR = 1.57; rs12711941, p = 4.26×10−7, OR = 1.56) satisfied our genome-wide significance threshold (modified Bonferroni p<5.11×10−7). These SNPs reside in an intergenic region less than 15 kb downstream from the 3′ terminus of the Inhibin, beta B (INHBB) gene on 2q14.2. They are in linkage disequilibrium (LD) with each other (r2 = 0.92), but not (r2<0.80) with any other genotyped SNP ±250 kb. DNA re-sequencing in and around the INHBB structural gene identified an additional 25 variants. Of the 21 variants that we successfully genotyped back in the case-control cohort the most significant association observed was for a third intergenic SNP (rs7576192, p = 1.48×10−7, OR = 1.59) in strong LD with the two significant GWAS SNPs (r2>0.92). We attempted to provide evidence of a putative regulatory role for these SNPs using bioinformatic analyses and found that they all reside within regions of low sequence conservation and/or low complexity, suggesting functional importance is low. We also explored the mRNA expression in decidua of genes ±500 kb of INHBB and found a nominally significant correlation between a transcript encoded by the EPB41L5 gene, ∼250 kb centromeric to INHBB, and preeclampsia (p = 0.03). We were unable to replicate the associations shown by the significant GWAS SNPs in case-control cohorts from Norway and Finland, leading us to conclude that it is more likely that these SNPs are in LD with as yet unidentified causal variant(s).


Molecular Psychiatry | 2011

Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes

Melanie A. Carless; David C. Glahn; Matthew P. Johnson; Joanne E. Curran; Kiymet Bozaoglu; Thomas D. Dyer; Anderson M. Winkler; Shelley A. Cole; Laura Almasy; Jean W. MacCluer; Ravindranath Duggirala; Eric K. Moses; Harald H H Göring; John Blangero

Although disrupted in schizophrenia 1 (DISC1) has been implicated in many psychiatric disorders, including schizophrenia, bipolar disorder, schizoaffective disorder and major depression, its biological role in these disorders is unclear. To better understand this gene and its role in psychiatric disease, we conducted transcriptional profiling and genome-wide association analysis in 1232 pedigreed Mexican-American individuals for whom we have neuroanatomic images, neurocognitive assessments and neuropsychiatric diagnoses. SOLAR was used to determine heritability, identify gene expression patterns and perform association analyses on 188 quantitative brain-related phenotypes. We found that the DISC1 transcript is highly heritable (h2=0.50; P=1.97 × 10−22), and that gene expression is strongly cis-regulated (cis-LOD=3.89) but is also influenced by trans-effects. We identified several DISC1 polymorphisms that were associated with cortical gray matter thickness within the parietal, temporal and frontal lobes. Associated regions affiliated with memory included the entorhinal cortex (rs821639, P=4.11 × 10−5; rs2356606, P=4.71 × 10−4), cingulate cortex (rs16856322, P=2.88 × 10−4) and parahippocampal gyrus (rs821639, P=4.95 × 10−4); those affiliated with executive and other cognitive processing included the transverse temporal gyrus (rs9661837, P=5.21 × 10−4; rs17773946, P=6.23 × 10−4), anterior cingulate cortex (rs2487453, P=4.79 × 10−4; rs3738401, P=5.43 × 10−4) and medial orbitofrontal cortex (rs9661837; P=7.40 × 10−4). Cognitive measures of working memory (rs2793094, P=3.38 × 10−4), as well as lifetime history of depression (rs4658966, P=4.33 × 10−4; rs12137417, P=4.93 × 10−4) and panic (rs12137417, P=7.41 × 10−4) were associated with DISC1 sequence variation. DISC1 has well-defined genetic regulation and clearly influences important phenotypes related to psychiatric disease.


American Journal of Obstetrics and Gynecology | 2011

A transcriptional profile of the decidua in preeclampsia

Mari Løset; Siv Boon Mundal; Matthew P. Johnson; Mona H. Fenstad; Katherine Freed; Ingrid Alsos Lian; Irina Poliakova Eide; Line Bjørge; John Blangero; Eric K. Moses; Rigmor Austgulen

OBJECTIVE We sought to obtain insight into possible mechanisms underlying preeclampsia using genomewide transcriptional profiling in decidua basalis. STUDY DESIGN Genomewide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal (n = 58) pregnancies. Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P < .05; false discovery rate, P < .1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated (PLA2G7, HMOX1) genes were identified. Pathway analysis revealed that tryptophan metabolism, endoplasmic reticulum stress, linoleic acid metabolism, notch signaling, fatty acid metabolism, arachidonic acid metabolism, and NRF2-mediated oxidative stress response were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways, and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved.


European Journal of Human Genetics | 2009

A critical assessment of the factors affecting reporter gene assays for promoter SNP function : a reassessment of -308 TNF polymorphism function using a novel integrated reporter system

Mahdad Karimi; Lauren C. Goldie; Mark N. Cruickshank; Eric K. Moses; Lawrence J. Abraham

One of the greatest challenges facing genetics is the development of strategies to identify functionally relevant genetic variation. The most common test of function is the reporter gene assay, in which allelic regulatory regions are used to drive the expression of a reporter gene, and differences in expression in a cell line after transient transfection are taken to be a reflection of the polymorphism. Many studies have reported small differences in single nucleotide polymorphism (SNP)-specific reporter activity, including the tumor necrosis factor (TNF) G−308A polymorphism. However, we have established that many variables inherent in the reporter gene approach can account for the reported allelic differences. Variables, such as the amount of DNA used in transfection, the amount of transfection control vector used, the method of transfection, the growth history of the host cells, and the quality and purity of DNA used, all influence TNF −308 SNP-specific transient reporter gene assays and serve as a caution for those researchers who apply this method to the functional assessment of polymorphic promoter sequences. We have developed an integrated reporter system that obviates some of these problems and shows that the TNF G−308A polymorphism is functionally relevant in this improved assay, thus confirming that the −308A allele expresses at a higher level compared with the −308G allele.

Collaboration


Dive into the Eric K. Moses's collaboration.

Top Co-Authors

Avatar

John Blangero

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Matthew P. Johnson

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Dyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Joanne E. Curran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald H H Göring

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Shelley A. Cole

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Laura Almasy

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rigmor Austgulen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Phillip E. Melton

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge