Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Karsenti is active.

Publication


Featured researches published by Eric Karsenti.


The EMBO Journal | 1993

Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis.

Ingrid Hoffmann; Paul R. Clarke; M J Marcote; Eric Karsenti; Giulio Draetta

We have investigated the mechanisms responsible for the sudden activation of the cdc2‐cyclin B protein kinase before mitosis. It has been found previously that cdc25 is the tyrosine phosphatase responsible for dephosphorylating and activating cdc2‐cyclin B. In Xenopus eggs and early embryos a cdc25 homologue undergoes periodic phosphorylation and activation. Here we show that the catalytic activity of human cdc25‐C phosphatase is also activated directly by phosphorylation in mitotic cells. Phosphorylation of cdc25‐C in mitotic HeLa extracts or by cdc2‐cyclin B increases its catalytic activity. cdc25‐C is not a substrate of the cyclin A‐associated kinases. cdc25‐C is able to activate cdc2‐cyclin B1 in Xenopus egg extracts and to induce Xenopus oocyte maturation, but only after stable thiophosphorylation. This demonstrates that phosphorylation of cdc25‐C is required for the activation of cdc2‐cyclin B and entry into M‐phase. Together, these studies offer a plausible explanation for the rapid activation of cdc2‐cyclin B at the onset of mitosis and the self‐amplification of MPF observed in vivo.


Cell | 2001

Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin α on TPX2 Activity

Oliver J. Gruss; Rafael E. Carazo-Salas; Christoph A. Schatz; Giulia Guarguaglini; Jürgen Kast; Matthias Wilm; Nathalie Le Bot; Isabelle Vernos; Eric Karsenti; Iain W. Mattaj

Abstract The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin α, and is displaced from importin α by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin α. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.


Science | 2015

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano

Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.


Science | 2015

Structure and function of the global ocean microbiome

Shinichi Sunagawa; Luis Pedro Coelho; Samuel Chaffron; Jens Roat Kultima; Karine Labadie; Guillem Salazar; Bardya Djahanschiri; Georg Zeller; Daniel R. Mende; Adriana Alberti; Francisco M. Cornejo-Castillo; Paul Igor Costea; Corinne Cruaud; Francesco d'Ovidio; Stefan Engelen; Isabel Ferrera; Josep M. Gasol; Lionel Guidi; Falk Hildebrand; Florian Kokoszka; Cyrille Lepoivre; Gipsi Lima-Mendez; Julie Poulain; Bonnie T. Poulos; Marta Royo-Llonch; Hugo Sarmento; Sara Vieira-Silva; Céline Dimier; Marc Picheral; Sarah Searson

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Nature | 1999

Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation

Rafael E. Carazo-Salas; Giulia Guarguaglini; Oliver J. Gruss; Alexandra Segref; Eric Karsenti; Iain W. Mattaj

Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells),. The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose thatRCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.


The EMBO Journal | 1994

Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition

Ingrid Hoffmann; Giulio Draetta; Eric Karsenti

Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2‐cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2‐cyclin B complex. This creates a positive feed‐back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2‐cyclin E kinase. Microinjection of anti‐cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto‐amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.


Current Biology | 1998

A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity

Claire E. Walczak; Isabelle Vernos; Timothy J. Mitchison; Eric Karsenti; Rebecca Heald

BACKGROUND In eukaryotes, assembly of the mitotic spindle requires the interaction of chromosomes with microtubules. During this process, several motor proteins that move along microtubules promote formation of a bipolar microtubule array, but the precise mechanism is unclear. In order to examine the roles of different motor proteins in building a bipolar spindle, we have used a simplified system in which spindles assemble around beads coated with plasmid DNA and incubated in extracts from Xenopus eggs. Using this system, we can study spindle assembly in the absence of paired cues, such as centrosomes and kinetochores, whose microtubule-organizing properties might mask the action of motor proteins. RESULTS We blocked the function of individual motor proteins in the Xenopus extracts using specific antibodies. Inhibition of Xenopus kinesin-like protein 1 (Xklp1) led either to the dissociation of chromatin beads from microtubule arrays, or to collapsed microtubule bundles on beads. Inhibition of Eg5 resulted in monopolar microtubule arrays emanating from chromatin beads. Addition of antibodies against dynein inhibited the focusing of microtubule ends into spindle poles in a dose-dependent manner. Inhibition of Xenopus carboxy-terminal kinesin 2 (XCTK2) affected both pole formation and spindle stability. Co-inhibition of XCTK2 and dynein dramatically increased the severity of spindle pole defects. Inhibition of Xklp2 caused only minor spindle pole defects. CONCLUSIONS Multiple microtubule-based motor activities are required for the bipolar organization of microtubules around chromatin beads, and we propose a model for the roles of the individual motor proteins in this process.


Nature Reviews Molecular Cell Biology | 2008

Self-organization in cell biology: a brief history

Eric Karsenti

Over the past two decades, molecular and cell biologists have made important progress in characterizing the components and compartments of the cell. New visualization methods have also revealed cellular dynamics. This has raised complex issues about the organization principles that underlie the emergence of coherent dynamical cell shapes and functions. Self-organization concepts that were first developed in chemistry and physics and then applied to various morphogenetic problems in biology over the past century are now beginning to be applied to the organization of the living cell.


Nature Cell Biology | 2002

Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells

Oliver J. Gruss; Malte Wittmann; Hideki Yokoyama; Rainer Pepperkok; Thomas A. Kufer; Herman Silljé; Eric Karsenti; Iain W. Mattaj; Isabelle Vernos

In Xenopus laevis egg extracts, TPX2 is required for the Ran-GTP-dependent assembly of microtubules around chromosomes. Here we show that interfering with the function of the human homologue of TPX2 in HeLa cells causes defects in microtubule organization during mitosis. Suppressing the expression of human TPX2 by RNA interference leads to the formation of two microtubule asters that do not interact and do not form a spindle. Our results suggest that in vivo, even in the presence of duplicated centrosomes, spindle formation requires the function of TPX2 to generate a stable bipolar spindle with overlapping antiparallel microtubule arrays. This indicates that chromosome-induced microtubule production is a general requirement for the formation of functional spindles in animal cells.


Cell | 1995

Xklp15 a chromosomal xenopus kinesin-like protein essential for spindle organization and chromosome positioning

Isabelle Vernos; Jos Raats; Tatsuya Hirano; Janet Heasman; Eric Karsenti; Christopher Wylie

Xklp1 is a novel Xenopus kinesin-like protein with a motor domain at the amino terminus, nuclear localization sequences in the stalk, and a putative zinc finger-like sequence in the tail. It is nuclear during interphase and chromosomal during mitosis. During late anaphase, a fraction of the protein relocalizes to the spindle interzone and accumulates in the midbody during telophase. Depletion of Xklp1 protein by antisense oligo knockout in oocytes leads to defective mitosis during the first cell cycles following fertilization. The bipolarity of spindles assembled in vitro in the presence of anti-Xklp1 antibodies is unstable, and the chromosomes fail to congress on the metaphase plate.

Collaboration


Dive into the Eric Karsenti's collaboration.

Top Co-Authors

Avatar

Isabelle Vernos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Antony

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

François Nédélec

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Iain W. Mattaj

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge