Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric L. Campbell is active.

Publication


Featured researches published by Eric L. Campbell.


Cell Host & Microbe | 2015

Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function

Caleb J. Kelly; Leon Zheng; Eric L. Campbell; Bejan Saeedi; Carsten C. Scholz; Amanda Bayless; Kelly Wilson; Louise Glover; Douglas J. Kominsky; Aaron Magnuson; Tiffany L. Weir; Stefan F. Ehrentraut; Christina Pickel; Kristine A. Kuhn; Jordi M. Lanis; Vu Nguyen; Cormac T. Taylor; Sean P. Colgan

Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa

Eric T. Clambey; Eóin N. McNamee; Joseph A. Westrich; Louise Glover; Eric L. Campbell; Paul Jedlicka; Edwin de Zoeten; John C. Cambier; Kurt R. Stenmark; Sean P. Colgan; Holger K. Eltzschig

Recent studies have demonstrated dramatic shifts in metabolic supply-and-demand ratios during inflammation, a process resulting in localized tissue hypoxia within inflammatory lesions (“inflammatory hypoxia”). As part of the adaptive immune response, T cells are recruited to sites of inflammatory hypoxia. Given the profound effects of hypoxia on gene regulation, we hypothesized that T-cell differentiation is controlled by hypoxia. To pursue this hypothesis, we analyzed the transcriptional consequences of ambient hypoxia (1% oxygen) on a broad panel of T-cell differentiation factors. Surprisingly, these studies revealed selective, robust induction of FoxP3, a key transcriptional regulator for regulatory T cells (Tregs). Studies of promoter binding or loss- and gain-of-function implicated hypoxia-inducible factor (HIF)-1α in inducing FoxP3. Similarly, hypoxia enhanced Treg abundance in vitro and in vivo. Finally, Treg-intrinsic HIF-1α was required for optimal Treg function and Hif1a–deficient Tregs failed to control T-cell–mediated colitis. These studies demonstrate that hypoxia is an intrinsic molecular cue that promotes FoxP3 expression, in turn eliciting potent anti-inflammatory mechanisms to limit tissue damage in conditions of reduced oxygen availability.


Journal of Immunology | 2010

Metabolic Shifts in Immunity and Inflammation

Douglas J. Kominsky; Eric L. Campbell; Sean P. Colgan

Sites of ongoing inflammation and triggered immune responses are characterized by significant changes in metabolic activity. Recent studies have indicated that such shifts in tissue metabolism result from a combination of profound recruitment of inflammatory cells (neutrophils and monocytes) and high proliferation rates among lymphocyte populations. The resultant shifts in energy supply and demand can result in metabolic acidosis and diminished delivery and/or availability of oxygen, leading to hypoxia extensive enough to trigger transcriptional and translation changes in tissue phenotype. Such phenotypic shifts can imprint fundamental changes to tissue metabolism. In this study, we review recent work addressing metabolic changes and metabolic control of inflammation and immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification

Eric L. Campbell; Christopher F. MacManus; Douglas J. Kominsky; Simon Keely; Louise Glover; Brittelle Bowers; Melanie Scully; Walter J. Bruyninckx; Sean P. Colgan

Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-κB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution.


Journal of Clinical Investigation | 2008

PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases

Thomas Weissmüller; Eric L. Campbell; Peter Rosenberger; Melanie Scully; Paul L. Beck; Glenn T. Furuta; Sean P. Colgan

Mucosal diseases are often characterized by an inflammatory infiltrate that includes polymorphonuclear leukocytes (PMNs), monocytes, lymphocytes, and platelets. A number of studies have suggested that the interaction of platelets with leukocytes has an essential proinflammatory role. Here, we examined whether platelets migrate across mucosal epithelium, as PMNs are known to do, and whether platelets influence epithelial cell function. Initial studies revealed that human platelets did not efficiently transmigrate across human epithelial cell monolayers. However, in the presence of human PMNs, platelet movement across the epithelium was proportional to the extent of PMN transmigration, and strategies that blocked PMN transmigration diminished platelet movement. Furthermore, platelet-PMN comigration was observed in intestinal tissue derived from human patients with inflammatory bowel disease (IBD). The translocated platelets were found to release large quantities of ATP, which was metabolized to adenosine via a 2-step enzymatic reaction mediated by ecto-nucleotidases, including CD73 and ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases), expressed on the apical membrane of the intestinal epithelial cells. In vitro studies and a mouse model of intestinal inflammation were employed to define a mechanism involving adenosine-mediated induction of electrogenic chloride secretion, with concomitant water movement into the intestinal lumen. These studies demonstrate that ecto-NTPDases are expressed on the apical membrane of epithelial cells and are involved in what we believe to be a previously unappreciated function for platelets in the inflamed intestine, which might promote bacterial clearance under inflammatory conditions.


Mucosal Immunology | 2014

Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis.

Simon Keely; Eric L. Campbell; Alan W. Baird; Philip M. Hansbro; Robert A. Shalwitz; Anna Kotsakis; Eóin N. McNamee; Holger K. Eltzschig; Douglas J. Kominsky; Sean P. Colgan

Pharmacological stabilization of hypoxia-inducible factor (HIF) through prolyl hydroxylase (PHD) inhibition limits mucosal damage associated with models of murine colitis. However, little is known about how PHD inhibitors (PHDi) influence systemic immune function during mucosal inflammation or the relative importance of immunological changes to mucosal protection. We hypothesized that PHDi enhances systemic innate immune responses to colitis-associated bacteremia. Mice with colitis induced by trinitrobenzene sulfonic acid were treated with AKB-4924, a new HIF-1 isoform-predominant PHDi, and clinical, immunological, and biochemical endpoints were assessed. Administration of AKB-4924 led to significantly reduced weight loss and disease activity compared with vehicle controls. Treated groups were pyrexic but did not become subsequently hypothermic. PHDi treatment augmented epithelial barrier function and led to an approximately 50-fold reduction in serum endotoxin during colitis. AKB-4924 also decreased cytokines involved in pyrogenesis and hypothermia, significantly reducing serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α while increasing IL-10. Treatment offered no protection against colitis in epithelial-specific HIF-1α-deficient mice, strongly implicating epithelial HIF-1α as the tissue target for AKB-4924-mediated protection. Taken together, these results indicate that inhibition of prolyl hydroxylase with AKB-4924 enhances innate immunity and identifies that the epithelium is a central site of inflammatory protection afforded by PHDi in murine colitis.


The FASEB Journal | 2009

Selective induction of integrin β1 by hypoxia-inducible factor: implications for wound healing

Simon Keely; Louise Glover; Christopher F. MacManus; Eric L. Campbell; Melanie Scully; Glenn T. Furuta; Sean P. Colgan

Because of localized vascular damage and increased tissue oxygen demand, wound healing occurs in a relatively hypoxic microenvironment. These features are particularly relevant to wound healing and fibrosis in chronic inflammatory conditions, such as Crohns disease and ulcerative colitis. In these studies, we sought to identify the contribution of hypoxia to mechanisms of wound repair in a model of the intestinal submucosa. Initial studies revealed that hypoxia promotes wound healing, as modeled by an increase in intestinal fibroblastmediated collagen gel contraction. Guided by results from transcriptional profiling, we identified the selective induction of fibroblast integrin β1 (ITGB1) by hypoxia. Further analysis revealed that hypoxia, as well as pharmacological activators of hypoxia‐inducible factor (HIF), induce fibroblast pi integrin mRNA, protein, and function by as much as 4‐fold. Cloning and analysis of the βi integrin gene promoter revealed a 10 ± 0.8‐fold increase in promoter activity in response to hypoxia, and subsequent studies identified a functional DNA binding region for HIF in the ITGB1 gene promoter. Mutational analysis of the HIF binding site within the ITGB1 promoter resulted in a significant loss of ITGB1 hypoxia‐inducibility. As proof of principle, studies in a murine model of colitis revealed a correlation between colitic disease severity and tissue ITGB1 expression (R2=0.80). Taken together, these results demonstrate that hypoxia induces fibroblast ITGB1 expression and function by transcriptional mechanisms dependent on HIF.— Keely, S., Glover, L. E., MacManus, C. F., Campbell, E. L., Scully, M. M., Furuta, G. T., Colgan, S. P. Selective induction of integrin β1 by hypoxia‐inducible factor: implications for wound healing. FASEBJ. 23, 1338–1346 (2009)


Mucosal Immunology | 2013

Fundamental role for HIF-1α in constitutive expression of human β defensin-1

C J Kelly; Louise Glover; Eric L. Campbell; Douglas J. Kominsky; S F Ehrentraut; B E Bowers; Amanda Bayless; Bejan Saeedi; Sean P. Colgan

Antimicrobial peptides are secreted by the intestinal epithelium to defend from microbial threats. The role of human β defensin-1 (hBD-1) is notable because its gene (beta-defensin 1 (DEFB1)) is constitutively expressed and its antimicrobial activity is potentiated in the low-oxygen environment that characterizes the intestinal mucosa. Hypoxia-inducible factor (HIF) is stabilized even in healthy intestinal mucosa, and we identified that epithelial HIF-1α maintains expression of murine defensins. Extension to a human model revealed that basal HIF-1α is critical for the constitutive expression of hBD-1. Chromatin immunoprecipitation identified HIF-1α binding to a hypoxia response element in the DEFB1 promoter whose importance was confirmed by site-directed mutagenesis. We used 94 human intestinal samples to identify a strong expression correlation between DEFB1 and the canonical HIF-1α target GLUT1. These findings indicate that basal HIF-1α is critical for constitutive expression of enteric DEFB1 and support targeting epithelial HIF for restoration and maintenance of intestinal integrity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis

Louise Glover; Brittelle Bowers; Bejan Saeedi; Stefan F. Ehrentraut; Eric L. Campbell; Amanda Bayless; Evgenia Dobrinskikh; Agnieszka A. Kendrick; Caleb J. Kelly; Adrianne Burgess; Lauren Miller; Douglas J. Kominsky; Paul Jedlicka; Sean P. Colgan

Significance Intestinal epithelial barrier dysregulation is a hallmark of inflammatory bowel diseases (IBDs). A central role for hypoxic signaling has been defined in barrier modulation during inflammation. We demonstrate that genes involved in creatine metabolism, the creatine kinases (CKs), are coordinately regulated by hypoxia-inducible transcription factors (HIFs) and that such regulation is critical to barrier function. Inhibition of the CK pathway abrogates apical junction assembly and barrier integrity. Dietary creatine supplementation profoundly attenuates the pathogenic course of mucosal inflammation in mouse colitis models. Moreover, we demonstrate altered expression of mitochondrial and cytosolic CK enzymes in IBD patient tissue. These findings highlight the fundamental contribution of creatine metabolism to intestinal mucosal function, homeostasis, and disease resolution. Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine–creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2–dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.


Journal of Immunology | 2011

Antimicrobial Aspects of Inflammatory Resolution in the Mucosa: A Role for Proresolving Mediators

Eric L. Campbell; Charles N. Serhan; Sean P. Colgan

Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial Ags, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier; in recent years, numerous findings implicate an active role of the epithelium with proresolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and proresolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression, and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosal homeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to proresolving lipid mediators.

Collaboration


Dive into the Eric L. Campbell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Glover

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Caleb J. Kelly

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan F. Ehrentraut

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Bejan Saeedi

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar

Brittelle Bowers

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge