Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric L. Weiss is active.

Publication


Featured researches published by Eric L. Weiss.


Science | 1996

Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption.

Kevin G. Hardwick; Eric L. Weiss; Francis C. Luca; Mark Winey; Andrew W. Murray

The spindle assembly checkpoint keeps cells with defective spindles from initiating chromosome segregation. The protein kinase Mps1 phosphorylates the yeast protein Mad1p when this checkpoint is activated, and the overexpression of Mps1p induces modification of Mad1p and arrests wild-type yeast cells in mitosis with morphologically normal spindles. Spindle assembly checkpoint mutants overexpressing Mps1p pass through mitosis without delay and can produce viable progeny, which demonstrates that the arrest of wild-type cells results from inappropriate activation of the checkpoint in cells whose spindle is fully functional. Ectopic activation of cell-cycle checkpoints might be used to exploit the differences in checkpoint status between normal and tumor cells and thus improve the selectivity of chemotherapy.


Nature Methods | 2012

TULIPs: Tunable, light-controlled interacting protein tags for cell biology

Devin Strickland; Yuan Lin; Elizabeth Wagner; C. Matthew Hope; Josiah P. Zayner; Chloe Antoniou; Tobin R. Sosnick; Eric L. Weiss; Michael Glotzer

Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.


Journal of Cell Biology | 2002

The Saccharomyces cerevisiae Mob2p–Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell–specific localization of Ace2p transcription factor

Eric L. Weiss; Cornelia Kurischko; Chao Zhang; Kevan M. Shokat; David G. Drubin; Francis C. Luca

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates events associated with the M to G1 transition. We investigated the function of two S. cerevisiae proteins related to the MEN proteins Mob1p and Dbf2p kinase. Previous work indicates that cells lacking the Dbf2p-related protein Cbk1p fail to sustain polarized growth during early bud morphogenesis and mating projection formation (Bidlingmaier, S., E.L. Weiss, C. Seidel, D.G. Drubin, and M. Snyder. 2001. Mol. Cell. Biol. 21:2449–2462). Cbk1p is also required for Ace2p-dependent transcription of genes involved in mother/daughter separation after cytokinesis. Here we show that the Mob1p-related protein Mob2p physically associates with Cbk1p kinase throughout the cell cycle and is required for full Cbk1p kinase activity, which is periodically activated during polarized growth and mitosis. Both Mob2p and Cbk1p localize interdependently to the bud cortex during polarized growth and to the bud neck and daughter cell nucleus during late mitosis. We found that Ace2p is restricted to daughter cell nuclei via a novel mechanism requiring Mob2p, Cbk1p, and a functional nuclear export pathway. Furthermore, nuclear localization of Mob2p and Ace2p does not occur in mob1–77 or cdc14–1 mutants, which are defective in MEN signaling, even when cell cycle arrest is bypassed. Collectively, these data indicate that Mob2p–Cbk1p functions to (a) maintain polarized cell growth, (b) prevent the nuclear export of Ace2p from the daughter cell nucleus after mitotic exit, and (c) coordinate Ace2p-dependent transcription with MEN activation. These findings may implicate related proteins in linking the regulation of cell morphology and cell cycle transitions with cell fate determination and development.


Molecular and Cellular Biology | 2001

The Cbk1p Pathway Is Important for Polarized Cell Growth and Cell Separation in Saccharomyces cerevisiae

Scott Bidlingmaier; Eric L. Weiss; Chris Seidel; David G. Drubin; Michael Snyder

ABSTRACT During the early stages of budding, cell wall remodeling and polarized secretion are concentrated at the bud tip (apical growth). The CBK1 gene, encoding a putative serine/threonine protein kinase, was identified in a screen designed to isolate mutations that affect apical growth. Analysis of cbk1Δ cells reveals that Cbk1p is required for efficient apical growth, proper mating projection morphology, bipolar bud site selection in diploid cells, and cell separation. Epitope-tagged Cbk1p localizes to both sides of the bud neck in late anaphase, just prior to cell separation.CBK1 and another gene, HYM1, were previously identified in a screen for genes involved in transcriptional repression and proposed to function in the same pathway. Deletion ofHYM1 causes phenotypes similar to those observed incbk1Δ cells and disrupts the bud neck localization of Cbk1p. Whole-genome transcriptional analysis of cbk1Δsuggests that the kinase regulates the expression of a number of genes with cell wall-related functions, including two genes required for efficient cell separation: the chitinase-encoding gene CTS1and the glucanase-encoding gene SCW11. The Ace2p transcription factor is required for expression of CTS1 and has been shown to physically interact with Cbk1p. Analysis oface2Δ cells reveals that Ace2p is required for cell separation but not for polarized growth. Our results suggest that Cbk1p and Hym1p function to regulate two distinct cell morphogenesis pathways: an ACE2-independent pathway that is required for efficient apical growth and mating projection formation and anACE2-dependent pathway that is required for efficient cell separation following cytokinesis. Cbk1p is most closely related to theNeurospora crassa Cot-1; Schizosaccharomyces pombe Orb6; Caenorhabditis elegans, Drosophila, and human Ndr; and Drosophila and mammalian WARTS/LATS kinases. Many Cbk1-related kinases have been shown to regulate cellular morphology.


The EMBO Journal | 1995

Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase

E Lauzé; B Stoelcker; Francis C. Luca; Eric L. Weiss; A R Schutz; Mark Winey

The MPS1 gene has been previously identified by a mutant allele that shows defects in spindle pole body (SPB) duplication and cell cycle control. The SPB is the centrosome‐equivalent organelle in the yeast Saccharomyces cerevisiae, and it nucleates all the microtubules in the cell. We report the isolation of the MPS1 gene, which encodes an essential protein kinase homolog. The MPS1 open reading frame has been fused to those that encode the LexA protein or the GST protein and both of these constructs function in yeast. The fusion proteins have been affinity‐purified from yeast extracts and the GST chimeric protein has been found to be a phosphoprotein. Both proteins have been used to demonstrate intrinsic in vitro protein kinase activity of Mps1p against exogenous substrates and itself (autophosphorylation). A mutation predicted to abolish kinase function not only eliminates in vitro protein kinase activity, but also behaves like a null mutation in vivo, suggesting that kinase activity contributes to the essential function of the protein. Phosphoamino acid analysis of substrates phosphorylated by Mps1p indicates that this kinase can phosphorylate serine, threonine and tyrosine residues, identifying Mps1p as a dual specificity protein kinase.


Nature Cell Biology | 2000

Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p.

Eric L. Weiss; Anthony C. Bishop; Kevan M. Shokat; David G. Drubin

The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Δ cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Δ cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.


PLOS Biology | 2008

The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry.

Emily Mazanka; Jess Alexander; Brian J. Yeh; Patrick Charoenpong; Drew M. Lowery; Michael B. Yaffe; Eric L. Weiss

Cell fate can be determined by asymmetric segregation of gene expression regulators. In the budding yeast Saccharomyces cerevisiae, the transcription factor Ace2 accumulates specifically in the daughter cell nucleus, where it drives transcription of genes that are not expressed in the mother cell. The NDR/LATS family protein kinase Cbk1 is required for Ace2 segregation and function. Using peptide scanning arrays, we determined Cbk1′s phosphorylation consensus motif, the first such unbiased approach for an enzyme of this family, showing that it is a basophilic kinase with an unusual preference for histidine −5 to the phosphorylation site. We found that Cbk1 phosphorylates such sites in Ace2, and that these modifications are critical for Ace2′s partitioning and function. Using proteins marked with GFP variants, we found that Ace2 moves from isotropic distribution to the daughter cell nuclear localization, well before cytokinesis, and that the nucleus must enter the daughter cell for Ace2 accumulation to occur. We found that Cbk1, unlike Ace2, is restricted to the daughter cell. Using both in vivo and in vitro assays, we found that two critical Cbk1 phosphorylations block Ace2′s interaction with nuclear export machinery, while a third distal modification most likely acts to increase the transcription factors activity. Our findings show that Cbk1 directly controls Ace2, regulating the transcription factors activity and interaction with nuclear export machinery through three phosphorylation sites. Furthermore, Cbk1 exhibits a novel specificity that is likely conserved among related kinases from yeast to metazoans. Cbk1 is functionally restricted to the daughter cell, and cannot diffuse from the daughter to the mother. In addition to providing a mechanism for Ace2 segregation, these findings show that an isotropically distributed cell fate determinant can be asymmetrically partitioned in cytoplasmically contiguous cells through spatial segregation of a regulating protein kinase.


Science Signaling | 2012

Proteome-wide discovery of evolutionary conserved sequences in disordered regions.

Alex N. Nguyen Ba; Brian J. Yeh; Dewald van Dyk; Alan R. Davidson; Brenda Andrews; Eric L. Weiss; Alan M. Moses

A statistical analysis method can identify short, functionally important linear motifs in disordered regions of proteins. Finding the Hidden Meaning in Disordered Regions Many proteins, including those involved in signal transduction, have large disordered regions, in addition to their clearly defined domains or motifs. Although these disordered regions are functionally important, identifying the important residues in these regions has proved challenging because the regions are not visualized in crystal structures and tend to exhibit high sequence divergence. Nguyen Ba et al. modified the phylogenetic hidden Markov model so that it could be applied to these disordered regions. Application of this method to yeast proteins not only revealed the presence of known short conserved motifs in proteins not known to have these motifs but also predicted previously unknown short conserved motifs. Experimental analysis suggested that both sets of motifs were functionally important. Thus, this approach should provide an effective method for discovering biologically important conserved motifs within the disordered regions of proteins. At least 30% of human proteins are thought to contain intrinsically disordered regions, which lack stable structural conformation. Despite lacking enzymatic functions and having few protein domains, disordered regions are functionally important for protein regulation and contain short linear motifs (short peptide sequences involved in protein-protein interactions), but in most disordered regions, the functional amino acid residues remain unknown. We searched for evolutionarily conserved sequences within disordered regions according to the hypothesis that conservation would indicate functional residues. Using a phylogenetic hidden Markov model (phylo-HMM), we made accurate, specific predictions of functional elements in disordered regions even when these elements are only two or three amino acids long. Among the conserved sequences that we identified were previously known and newly identified short linear motifs, and we experimentally verified key examples, including a motif that may mediate interaction between protein kinase Cbk1 and its substrates. We also observed that hub proteins, which interact with many partners in a protein interaction network, are highly enriched in these conserved sequences. Our analysis enabled the systematic identification of the functional residues in disordered regions and suggested that at least 5% of amino acids in disordered regions are important for function.


Genetics | 2012

Mitotic Exit and Separation of Mother and Daughter Cells

Eric L. Weiss

Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical parts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.


Journal of Cell Biology | 2006

Phosphoregulation of Cbk1 is critical for RAM network control of transcription and morphogenesis

Jaclyn M. Jansen; Margaret F. Barry; Charles K. Yoo; Eric L. Weiss

The budding yeast regulation of Ace2 and morphogenesis (RAM) network integrates cell fate determination and morphogenesis. Its disruption impairs polarized growth and causes mislocalization of the transcription factor Ace2, resulting in failure of daughter cell–specific transcription required for cell separation. We find that phosphoregulation of the conserved AGC family kinase Cbk1 is critical for RAM network function. Intramolecular autophosphorylation of the enzymes activation loop is critical for kinase activity but is only partially required for cell separation and polarized growth. In marked contrast, phosphorylation of a C-terminal hydrophobic motif is required for Cbk1 function in vivo but not for its kinase activity, suggesting a previously unappreciated level of control for this family of kinases. Phosphorylation of the C-terminal site is regulated over the cell cycle and requires the transcription factor Ace2 as well as all RAM network components. Therefore, Ace2 is not only a downstream target of Cbk1 but also reinforces activation of its upstream regulator.

Collaboration


Dive into the Eric L. Weiss's collaboration.

Top Co-Authors

Avatar

Brian J. Yeh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis C. Luca

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Winey

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge