Eric Letouzé
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Letouzé.
Nature Genetics | 2012
Cécile Guichard; Giuliana Amaddeo; Sandrine Imbeaud; Yannick Ladeiro; Laura Pelletier; Ichrafe Ben Maad; Julien Calderaro; Paulette Bioulac-Sage; Mélanie Letexier; Françoise Degos; Bruno Clément; Charles Balabaud; Eric Chevet; Alexis Laurent; Gabrielle Couchy; Eric Letouzé; Fabien Calvo; Jessica Zucman-Rossi
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.
Nature Genetics | 2015
Kornelius Schulze; Sandrine Imbeaud; Eric Letouzé; Ludmil B. Alexandrov; Julien Calderaro; Sandra Rebouissou; Gabrielle Couchy; Clément Meiller; Jayendra Shinde; Frederic Soysouvanh; Anna Line Calatayud; Laura Pelletier; Charles Balabaud; Alexis Laurent; Jean Frédéric Blanc; Vincenzo Mazzaferro; Fabien Calvo; Augusto Villanueva; Jean Charles Nault; Paulette Bioulac-Sage; Michael R. Stratton; Josep M. Llovet; Jessica Zucman-Rossi
Genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. Analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereas FGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. In conclusion, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.
Cancer Cell | 2013
Eric Letouzé; Cosimo Martinelli; Céline Loriot; Nelly Burnichon; Nasséra Abermil; Chris Ottolenghi; Maxime Janin; Mélanie Menara; An Thach Nguyen; Paule Bénit; Alexandre Buffet; Charles Marcaillou; Jérôme Bertherat; Laurence Amar; Pierre Rustin; Aurélien de Reyniès; Anne-Paule Gimenez-Roqueplo; Judith Favier
Paragangliomas are neuroendocrine tumors frequently associated with mutations in RET, NF1, VHL, and succinate dehydrogenase (SDHx) genes. Methylome analysis of a large paraganglioma cohort identified three stable clusters, associated with distinct clinical features and mutational status. SDHx-related tumors displayed a hypermethylator phenotype, associated with downregulation of key genes involved in neuroendocrine differentiation. Succinate accumulation in SDH-deficient mouse chromaffin cells led to DNA hypermethylation by inhibition of 2-OG-dependent histone and DNA demethylases and established a migratory phenotype reversed by decitabine treatment. Epigenetic silencing was particularly severe in SDHB-mutated tumors, potentially explaining their malignancy. Finally, inactivating FH mutations were identified in the only hypermethylated tumor without SDHx mutations. These findings emphasize the interplay between the Krebs cycle, epigenomic changes, and cancer.
Nature Genetics | 2014
Guillaume Assié; Eric Letouzé; Martin Fassnacht; Anne Jouinot; Windy Luscap; Olivia Barreau; Hanin Omeiri; S. Rodriguez; Karine Perlemoine; F. René-Corail; Nabila Elarouci; Silviu Sbiera; Matthias Kroiss; Bruno Allolio; Jens Waldmann; Marcus Quinkler; Massimo Mannelli; Franco Mantero; Thomas G. Papathomas; Ronald R. de Krijger; Antoine Tabarin; V. Kerlan; Eric Baudin; Frédérique Tissier; Bertrand Dousset; Lionel Groussin; Laurence Amar; Eric Clauser; Xavier Bertagna; Bruno Ragazzon
Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin ligase, was the most frequently altered gene (21%) and is a potential new tumor suppressor gene related to the β-catenin pathway. Our integrated genomic analyses further identified two distinct molecular subgroups with opposite outcome. The C1A group of ACCs with poor outcome displayed numerous mutations and DNA methylation alterations, whereas the C1B group of ACCs with good prognosis displayed specific deregulation of two microRNA clusters. Thus, aggressive and indolent ACCs correspond to two distinct molecular entities driven by different oncogenic alterations.
Nature Genetics | 2015
Jean-Charles Nault; Shalini Datta; Sandrine Imbeaud; Andrea Franconi; Maxime Mallet; Gabrielle Couchy; Eric Letouzé; Camilla Pilati; Benjamin Verret; Jean-Frédéric Blanc; Charles Balabaud; Julien Calderaro; Alexis Laurent; Mélanie Letexier; Paulette Bioulac-Sage; Fabien Calvo; Jessica Zucman-Rossi
Hepatocellular carcinomas (HCCs) are liver tumors related to various etiologies, including alcohol intake and infection with hepatitis B (HBV) or C (HCV) virus. Additional risk factors remain to be identified, particularly in patients who develop HCC without cirrhosis. We found clonal integration of adeno-associated virus type 2 (AAV2) in 11 of 193 HCCs. These AAV2 integrations occurred in known cancer driver genes, namely CCNA2 (cyclin A2; four cases), TERT (telomerase reverse transcriptase; one case), CCNE1 (cyclin E1; three cases), TNFSF10 (tumor necrosis factor superfamily member 10; two cases) and KMT2B (lysine-specific methyltransferase 2B; one case), leading to overexpression of the target genes. Tumors with viral integration mainly developed in non-cirrhotic liver (9 of 11 cases) and without known risk factors (6 of 11 cases), suggesting a pathogenic role for AAV2 in these patients. In conclusion, AAV2 is a DNA virus associated with oncogenic insertional mutagenesis in human HCC.
Cancer Cell | 2014
Camilla Pilati; Eric Letouzé; Jean-Charles Nault; Sandrine Imbeaud; Anaïs Boulai; Julien Calderaro; Karine Poussin; Andrea Franconi; Gabrielle Couchy; Guillaume Morcrette; Maxime Mallet; Saïd Taouji; Charles Balabaud; Benoit Terris; Frédéric Canal; Valérie Paradis; Jean-Yves Scoazec; Anne De Muret; Catherine Guettier; Paulette Bioulac-Sage; Eric Chevet; Fabien Calvo; Jessica Zucman-Rossi
Hepatocellular adenomas (HCA) are benign liver tumors predominantly developed in women using oral contraceptives. Here, exome sequencing identified recurrent somatic FRK mutations that induce constitutive kinase activity, STAT3 activation, and cell proliferation sensitive to Src inhibitors. We also found uncommon recurrent mutations activating JAK1, gp130, or β-catenin. Chromosome copy number and methylation profiling revealed patterns that correlated with specific gene mutations and tumor phenotypes. Finally, integrative analysis of HCAs transformed to hepatocellular carcinoma revealed β-catenin mutation as an early alteration and TERT promoter mutations as associated with the last step of the adenoma-carcinoma transition. In conclusion, we identified the genomic diversity in benign hepatocyte proliferation, several therapeutic targets, and the key genomic determinants of the adenoma-carcinoma transformation sequence.
Human Molecular Genetics | 2012
Nelly Burnichon; Alexandre Buffet; Béatrice Parfait; Eric Letouzé; Ingrid Laurendeau; Céline Loriot; Eric Pasmant; Nasséra Abermil; Laurence Valeyrie-Allanore; Jérôme Bertherat; Laurence Amar; Dominique Vidaud; Judith Favier; Anne-Paule Gimenez-Roqueplo
Germline mutations in the RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, MAX, TMEM127, NF1 or VHL genes are identified in about 30% of patients with pheochromocytoma or paraganglioma and somatic mutations in RET, VHL or MAX genes are reported in 17% of sporadic tumors. In the present study, using mutation screening of the NF1 gene, mapping of chromosome aberrations by single nucleotide polymorphism (SNP) array, microarray-based expression profiling and immunohistochemistry (IHC), we addressed the implication of NF1 somatic alterations in pheochromocytomas and paragangliomas. We studied 53 sporadic tumors, selected because of their classification with RET/NF1/TMEM127-related tumors by genome wide expression studies, as well as a second set of 11 independent tumors selected on their low individual levels of NF1 expression evaluated by microarray. Direct sequencing of the NF1 gene in tumor DNA identified the presence of an inactivating NF1 somatic mutation in 41% (25/61) of analyzed sporadic tumors, associated with loss of the wild-type allele in 84% (21/25) of cases. Gene expression signature of NF1-related tumors highlighted the downregulation of NF1 and the major overexpression of SOX9. Among the second set of 11 tumors, two sporadic tumors carried somatic mutations in NF1 as well as in another susceptibility gene. These new findings suggest that NF1 loss of function is a frequent event in the tumorigenesis of sporadic pheochromocytoma and strengthen the new concept of molecular-based targeted therapy for pheochromocytoma or paraganglioma.
Science Translational Medicine | 2014
Sandra Rebouissou; Isabelle Bernard-Pierrot; Aurélien de Reyniès; May-Linda Lepage; Clémentine Krucker; Elodie Chapeaublanc; Aurélie Hérault; Aurélie Kamoun; Aurélie Caillault; Eric Letouzé; Nabila Elarouci; Yann Neuzillet; Yves Denoux; Vincent Molinié; Dimitri Vordos; Agnès Laplanche; Pascale Maillé; Karina Ofualuka; Fabien Reyal; Anne Biton; Mathilde Sibony; Xavier Paoletti; Jennifer Southgate; Simone Benhamou; Thierry Lebret; Yves Allory; François Radvanyi
A subtype of aggressive human muscle-invasive bladder cancer expresses basal epithelial markers and is sensitive to EGFR inhibition in preclinical models. Bladder Cancer’s Basal Instincts Like most cancers, bladder tumors are much easier to treat when they do not invade deep into the tissue, accounting for the poor outcomes of patients with muscle-invasive bladder cancer. By performing genetic analysis on a large number of these tumors, Rebouissou et al. identified a specific subgroup of muscle-invasive bladder cancers expressing basal markers. Although these are aggressive tumors, the authors showed that they have a weak spot and are unusually dependent on the activity of a signaling pathway called epidermal growth factor receptor (EGFR). As a result, these tumors are sensitive to treatment with drugs that inhibit the EGFR pathway, which the authors confirmed in preclinical models. Muscle-invasive bladder carcinoma (MIBC) constitutes a heterogeneous group of tumors with a poor outcome. Molecular stratification of MIBC may identify clinically relevant tumor subgroups and help to provide effective targeted therapies. From seven series of large-scale transcriptomic data (383 tumors), we identified an MIBC subgroup accounting for 23.5% of MIBC, associated with shorter survival and displaying a basal-like phenotype, as shown by the expression of epithelial basal cell markers. Basal-like tumors presented an activation of the epidermal growth factor receptor (EGFR) pathway linked to frequent EGFR gains and activation of an EGFR autocrine loop. We used a 40-gene expression classifier derived from human tumors to identify human bladder cancer cell lines and a chemically induced mouse model of bladder cancer corresponding to human basal-like bladder cancer. We showed, in both models, that tumor cells were sensitive to anti-EGFR therapy. Our findings provide preclinical proof of concept that anti-EGFR therapy can be used to target a subset of particularly aggressive MIBC tumors expressing basal cell markers and provide diagnostic tools for identifying these tumors.
Hepatology | 2015
Augusto Villanueva; Anna Portela; Sergi Sayols; Carlo Battiston; Yujin Hoshida; Jesús Méndez-González; Sandrine Imbeaud; Eric Letouzé; Virginia Hernández-Gea; Helena Cornella; Manel Solé; Josep Fuster; Jessica Zucman-Rossi; Vincenzo Mazzaferro; Manel Esteller; Josep M. Llovet
Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation‐based prognostic signature using a training‐validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine‐phosphate‐guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C–related HCC) and validation sets (n = 83; 47% alcohol‐related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF‐6] domain family member 1, insulin‐like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). Conclusions: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA–based signatures indicating tumors with progenitor cell features. (Hepatology 2015;61:1945–1956)
Nature Communications | 2015
Luis-Jaime Castro-Vega; Eric Letouzé; Nelly Burnichon; Alexandre Buffet; Disderot Ph; Khalifa E; Céline Loriot; Nabila Elarouci; Aurélie Morin; Mélanie Menara; Charlotte Lepoutre-Lussey; Cécile Badoual; Mathilde Sibony; Bertrand Dousset; Rossella Libé; Frank Zinzindohoué; P.-F. Plouin; Jérôme Bertherat; Laurence Amar; de Reyniès A; Judith Favier; Anne-Paule Gimenez-Roqueplo
Pheochromocytomas and paragangliomas (PCCs/PGLs) are neural crest-derived tumours with a very strong genetic component. Here we report the first integrated genomic examination of a large collection of PCC/PGL. SNP array analysis reveals distinct copy-number patterns associated with genetic background. Whole-exome sequencing shows a low mutation rate of 0.3 mutations per megabase, with few recurrent somatic mutations in genes not previously associated with PCC/PGL. DNA methylation arrays and miRNA sequencing identify DNA methylation changes and miRNA expression clusters strongly associated with messenger RNA expression profiling. Overexpression of the miRNA cluster 182/96/183 is specific in SDHB-mutated tumours and induces malignant traits, whereas silencing of the imprinted DLK1-MEG3 miRNA cluster appears as a potential driver in a subgroup of sporadic tumours. Altogether, the complete genomic landscape of PCC/PGL is mainly driven by distinct germline and/or somatic mutations in susceptibility genes and reveals different molecular entities, characterized by a set of unique genomic alterations.