Eric M. Bachelder
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric M. Bachelder.
Journal of the American Chemical Society | 2008
Eric M. Bachelder; Tristan T. Beaudette; Kyle E. Broaders; Jesse Dashe; Jean M. J. Fréchet
Dextran, a biocompatible, water-soluble polysaccharide, was modified at its hydroxyls with acetal moieties such that it became insoluble in water but freely soluble in common organic solvents enabling its use in the facile preparation of acid-sensitive microparticles. These particles degrade in a pH-dependent manner: FITC-dextran was released with a half-life at 37 degrees C of 10 h at pH 5.0 compared to a half-life of approximately 15 days at pH 7.4. Both hydrophobic and hydrophilic cargoes were successfully loaded into these particles using single and double emulsion techniques, respectively. When used in a model vaccine application, particles loaded with the protein ovalbumin (OVA) increased the presentation of OVA-derived peptides to CD8+ T-cells 16-fold relative to OVA alone. Additionally, this dextran derivative was found to be nontoxic in preliminary in vitro cytotoxicity assays. Owing to its ease of preparation, processability, pH-sensitivity, and biocompatibility, this type of modified dextran should find use in numerous drug delivery applications.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kyle E. Broaders; Joel A. Cohen; Tristan T. Beaudette; Eric M. Bachelder; Jean M. J. Fréchet
Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.
Bioconjugate Chemistry | 2008
Sergey E. Paramonov; Eric M. Bachelder; Tristan T. Beaudette; Stephany M. Standley; Cameron C. Lee; Jesse Dashe; Jean M. J. Fréchet
A library of polyurethanes and polyureas with different hydrophobicities containing the same acid-degradable dimethyl ketal moiety embedded in the polymer main chain have been prepared. All polymers were synthesized using an AA-BB type step-growth polymerization by reaction of bis(p-nitrophenyl carbamate/carbonate) or diisocyanate monomers with an acid-degradable, ketal-containing diamine. These polymers were designed to hydrolyze at different rates in mildly acidic conditions as a function of their hydrophobicity to afford small molecules only with no polymeric byproduct. The library of polymers was screened for the formation of microparticles using a double emulsion technique. The microparticles that were obtained degraded significantly faster at acidic pH (5.0) than at physiological pH (7.4) with degradation kinetics related to the hydrophobicity of the starting polymer. In vitro studies demonstrated the ability of the FITC-BSA loaded microparticles to be phagocytosed by macrophages resulting in a 10-fold increase in the protein uptake compared to a free protein control; in addition, the microparticles were found to be nontoxic at the concentrations tested of up to 1 mg/mL. The ease of preparation of the polymers coupled with the ability to tune their hydrophobicity and the high acid sensitivity of the microparticles identify this new class of materials as promising candidates for the delivery of bioactive materials.
Molecular Pharmaceutics | 2010
Eric M. Bachelder; Tristan T. Beaudette; Kyle E. Broaders; Jean M. J. Fréchet; Mark T. Albrecht; Alfred Mateczun; Kristy M. Ainslie; John T. Pesce; Andrea Keane-Myers
Toll-like receptor (TLR) agonists induce potent innate immune responses and can be used in the development of novel vaccine adjuvants. However, access to TLRs can be challenging as exemplified by TLR 7, which is located intracellularly in endosomal compartments. To increase recognition and subsequent stimulatory effects of TLR 7, imiquimod was encapsulated in acetalated dextran (Ac-DEX) microparticles. Ac-DEX, a water-insoluble and biocompatible polymer, is relatively stable at pH 7.4, but degrades rapidly under acidic conditions, such as those found in lysosomal vesicles. To determine the immunostimulatory capacity of encapsulated imiquimod, we compared the efficacy of free versus encapsulated imiquimod in activating RAW 264.7 macrophages, MH-S macrophages, and bone marrow derived dendritic cells. Encapsulated imiquimod significantly increased IL-1 beta, IL-6, and TNF-alpha cytokine expression in macrophages relative to the free drug. Furthermore, significant increases were observed in classic macrophage activation markers (iNOS, PD1-L1, and NO) after treatment with encapsulated imiquimod over the free drug. Also, bone marrow derived dendritic cells produced significantly higher levels of IL-1 beta, IL-6, IL-12p70, and MIP-1 alpha as compared to their counterparts receiving free imiquimod. These results suggest that encapsulation of TLR ligands within Ac-DEX microparticles results in increased immunostimulation and potentially better protection from disease when used in conjunction with vaccine formulations.
Advanced Materials | 2010
Joel A. Cohen; Tristan T. Beaudette; Jessica L. Cohen; Kyle E. Broaders; Eric M. Bachelder; Jean M. J. Fréchet
Controlled intracellular delivery of genetic material for vaccine or other therapeutic applications in vivo remains a major challenge for non-viral delivery systems.[1,2] As an alternative to cationic polymers and lipids commonly used to form nano-scale complexes for in vitro plasmid transfection,[3–6] microparticles made from biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) and acid-sensitive poly(ortho esters) (POEs) and hydrogels have been pursued as in vivo plasmid DNA carriers.[6–9] Due to their size (typically 1–10 μm), these particles passively target phagocytic antigen presenting cells (APCs) of the immune system for DNA vaccine applications.[8] In addition, these particles may alleviate the shortcomings of cationic polymers and lipids with regard to in vivo targeting, toxicity, and stability.[3] Despite their promise, microparticulate delivery systems explored to date often suffer from uncontrolled initial burst release of upwards of 50% of the encapsulated plasmid, independent of any built-in triggered-release mechanism, making it difficult to achieve rapid yet controlled release in response to a specific stimulus.[10] Furthermore, there have been few reports to date of attempts to extend the application of these systems to target non-phagocytic cells, which are present in much greater quantity throughout the body. Herein we report a tunable and modular microparticle system for plasmid delivery that, we hypothesized, would overcome these problems and simultaneously allow the systematic study of the dependence of transfection efficiency on various formulation parameters including degradation kinetics, use of cationic blend polymers, and surface functionalization for the transfection of non-phagocytic cells.
Bioconjugate Chemistry | 2009
Joel A. Cohen; Tristan T. Beaudette; William W. Tseng; Eric M. Bachelder; Ines Mende; Edgar G. Engleman; Jean M. J. Fréchet
Polymeric carriers designed to encapsulate protein antigens have great potential for improving the efficacy of vaccines and immunotherapeutics for diseases such as cancer. We recently developed a carrier system based on polyacrylamide hydrogel microparticles cross-linked with acid-labile moieties. After being phagocytosed by antigen-presenting cells, the protein encapsulated within the carrier is released and processed for subsequent presentation of antigenic epitopes. To understand the impact of particle size on the activation of T-cells following uptake by antigen-presenting cells, particles with mean diameters of 3.5 microm and 35 nm encapsulating a model protein antigen were synthesized by emulsion and microemulsion based polymerization techniques, respectively. In vivo tests demonstrated that both sizes of particles were effective at stimulating the proliferation of T-cells and were capable of generating an antigen-specific cytotoxic T-cell response when coadministered with immunostimulatory DNA. Contrary to previous reports in the literature, our results suggest that there is no significant difference in the magnitude of T-cell activation for the two sizes of particles used in these experiments. This disparity in findings may be related to fundamental differences in material properties of the carriers used in these studies, such as the hydrophilicity of the polyacrylamide particles described here versus the hydrophobic nature of carriers investigated by other groups.
Journal of the American Chemical Society | 2009
Tristan T. Beaudette; Joel A. Cohen; Eric M. Bachelder; Kyle E. Broaders; Jessica L. Cohen; Edgar G. Engleman; Jean M. J. Fréchet
Despite the promise of precisely targeted or otherwise functionalized polymeric particulate drug delivery vehicles, typical biocompatible particles are generally not amenable to facile and selective surface modification. Herein, we report the development of a simple, mild, and chemoselective strategy for the conjugation of biologically active molecules to the surface of dextran-based microparticles. Alkoxyamine-bearing reagents were used to form stable oxime conjugates with latent aldehyde functionality present in reducing carbohydrate chain ends. We demonstrate the functionalization of dextran-based microparticles with a fluorophore as well as a cell-penetrating peptide sequence, which facilitated the delivery of cargo to nonphagocytic cells leading to a 60-fold increase in the expression of a reporter gene when plasmid DNA-loaded particles were used.
Molecular Pharmaceutics | 2008
Eric M. Bachelder; Tristan T. Beaudette; Kyle E. Broaders; Sergey E. Paramonov; Jesse Dashe; Jean M. J. Fréchet
Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation byproduct of the particles was synthesized and tested in vitro for toxicity indicating an LC 50 of 12,500 microg/mL. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation byproduct inside RAW macrophages was at its highest level after 24 h of culture and was efficiently exocytosed until it was no longer detectable after 4 days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with nontoxic byproducts, which may find use in various biomedical applications including protein-based vaccines.
International Journal of Pharmaceutics | 2012
Kevin J. Kauffman; Naveen Kanthamneni; Samantha A. Meenach; Benjamin C. Pierson; Eric M. Bachelder; Kristy M. Ainslie
Immunosuppressive drugs can treat autoimmune disorders and limit rejection with organ transplants. However, delivering immunosuppressants like rapamycin systemically can have harmful side-effects. We aim to potentially reduce these toxic side-effects by encapsulating rapamycin in a polymeric microparticle to passively target phagocytes, the cells integral in immunosuppression. Acetalated dextran (Ac-DEX) is a recently described, biocompatible polymer which undergoes tunable burst degradation at the acidic conditions present in the phagosome (pH 5) but slower degradation at extracellular conditions (pH 7.4), thereby making it an ideal candidate for immune applications. Rapamycin-loaded microparticles were fabricated from Ac-DEX through a single emulsion (water/oil) technique. Optimized microparticles were determined by varying the chemical and physical parameters during particle synthesis. Microparticles synthesized from Ac-DEX with a molecular weight of 71 k had higher encapsulation efficiency of rapamycin and slower overall degradation than microparticles synthesized from 10k Ac-DEX. To evaluate the ability of rapamycin-loaded Ac-DEX microparticles to reduce a pro-inflammatory response, they were incubated with lipopolysaccharide-stimulated RAW macrophages. RAW macrophages treated with rapamycin-loaded microparticles exhibited reduced nitric oxide production and favorable cell viability. Overall, we have shown optimization of immunosuppressive rapamycin-loaded microparticles using the novel polymer Ac-DEX. These particles will be advantageous for future applications in immune suppression therapies.
Small | 2009
Kristy M. Ainslie; Rachel D. Lowe; Tristan T. Beaudette; Lamar Petty; Eric M. Bachelder; Tejal A. Desai
The development of a novel microfabricated device for oral drug delivery that overcomes many of the common barriers present in the gastrointestinal tract is reported. Specifically, the attachment of targeting ligands, subsequent device binding, and small molecule release from the microdevices in flow are investigated. A diffusion chamber that permits the simultaneous study of particle binding and small-molecule release under physiologically relevant shear conditions is developed. It is observed that once the particles bind to the cell surface, they remain attached. A small fraction of the devices detach in flow; however, most of these devices readily reattach to the cell layer in a new location. This steady-state density of microdevices is most likely the result of larger order microdevice clusters releasing their loose interactions with nearby microdevices, shifting slightly downstream, and subsequently reattaching to the cell monolayer. The release of a model small molecule from microdevices over time is roughly linear and approximately ten times greater than that observed with the small molecule alone. Overall, the preparation and characterization of an oral drug-delivery microdevice system capable of both targeting and asymmetric release in flow is reported.