Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Kramer is active.

Publication


Featured researches published by Eric M. Kramer.


Nature Cell Biology | 2008

The auxin influx carrier LAX3 promotes lateral root emergence

Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze

Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.


Nature Cell Biology | 2005

Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal.

Ranjan Swarup; Eric M. Kramer; Paula Perry; Kirsten Knox; H. M. Ottoline Leyser; Jim Haseloff; Gerrit T.S. Beemster; Rishikesh P. Bhalerao; Malcolm J. Bennett

Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.


Nature Cell Biology | 2009

Auxin transport through non-hair cells sustains root-hair development

Angharad R. Jones; Eric M. Kramer; Kirsten Knox; Ranjan Swarup; Malcolm J. Bennett; Colin M. Lazarus; H. M. Ottoline Leyser; Claire S. Grierson

The plant hormone auxin controls root epidermal cell development in a concentration-dependent manner. Root hairs are produced on a subset of epidermal cells as they increase in distance from the root tip. Auxin is required for their initiation and continued growth, but little is known about its distribution in this region of the root. Contrary to the expectation that hair cells might require active auxin influx to ensure auxin supply, we did not detect the auxin-influx transporter AUX1 in root-hair cells. A high level of AUX1 expression was detected in adjacent non-hair cell files. Non-hair cells were necessary to achieve wild-type root-hair length, although an auxin response was not required in these cells. Three-dimensional modelling of auxin flow in the root tip suggests that AUX1-dependent transport through non-hair cells maintains an auxin supply to developing hair cells as they increase in distance from the root tip, and sustains root-hair outgrowth. Experimental data support the hypothesis that instead of moving uniformly though the epidermal cell layer, auxin is mainly transported through canals that extend longitudinally into the tissue.


The Plant Cell | 2014

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex

Leah R. Band; Darren M. Wells; John A. Fozard; Teodor Ghetiu; Andrew P. French; Michael P. Pound; Michael Wilson; Lei Yu; Wenda Li; Hussein Hijazi; Jaesung Oh; Simon P. Pearce; Miguel A. Perez-Amador; Jeonga Yun; Eric M. Kramer; Jose M. Alonso; Christophe Godin; Teva Vernoux; T. Charlie Hodgman; Tony P. Pridmore; Ranjan Swarup; John R. King; Malcolm J. Bennett

This study presents a computational model for auxin transport based on actual root cell geometries and carrier subcellular localizations and tested using the DII-VENUS auxin sensor. The model shows that nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues. Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin’s shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.


Plant Physiology | 2011

Regulation of solute flux through plasmodesmata in the root meristem

Heidi Rutschow; Tobias I. Baskin; Eric M. Kramer

Plasmodesmata permit solutes to move between cells nonspecifically and without having to cross a membrane. This symplastic connectivity, while straightforward to observe using fluorescent tracers, has proven difficult to quantify. We use fluorescence recovery after photobleaching, combined with a mathematical model of symplastic diffusion, to assay plasmodesmata-mediated permeability in the Arabidopsis (Arabidopsis thaliana) root meristem in wild-type and transgenic lines, and under selected chemical treatments. The permeability measured for the wild type is nearly 10-times greater than previously reported. Plamodesmal permeability remains constant in seedlings treated with auxin (30 nm indoleacetic acid for 2 and 24 h; 100 nm indoleacetic acid for 2 h); however, permeability is diminished in two lines previously reported to have impaired plasmodesmal function as well as in wild-type seedlings treated for 24 h with 0.6 mm tryptophan. Moreover, plasmodesmal permeability is strongly altered by applied hydrogen peroxide within 2 h of treatment, being approximately doubled at a low concentration (0.6 mm) and nearly eliminated at a higher one (6 mm). These results reveal that the plasmodesmata in the root meristem carry a substantial flux of small molecules and that this flux is subject to rapid regulation.


Molecular Systems Biology | 2014

Sequential induction of auxin efflux and influx carriers regulates lateral root emergence

Benjamin Péret; Alistair M. Middleton; Andrew P. French; Antoine Larrieu; Anthony Bishopp; Maria Fransiska Njo; Darren M. Wells; Silvana Porco; Nathan Mellor; Leah R. Band; Ilda Casimiro; Juergen Kleine-Vehn; Steffen Vanneste; Ilkka Sairanen; Romain Mallet; Göran Sandberg; Karin Ljung; Tom Beeckman; Eva Benková; Jiri Friml; Eric M. Kramer; John R. King; Ive De Smet; Tony P. Pridmore; Markus R. Owen; Malcolm J. Bennett

In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell‐wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three‐dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.


PLOS ONE | 2010

The Advantages of a Tapered Whisker

Christopher M. Williams; Eric M. Kramer

The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals.


Plant Physiology | 2006

How Far Can a Molecule of Weak Acid Travel in the Apoplast or Xylem

Eric M. Kramer

The plant hormones auxin, abscisic acid (ABA), and the gibberellins (GAs) are all weak acids subject to the ion-trapping mechanism that tends to remove them from the extracellular space and concentrate them in the cytoplasm of plant cells. If a molecule of one of these compounds enters the


Trends in Plant Science | 2011

AuxV: a database of auxin transport velocities

Eric M. Kramer; Heidi L. Rutschow; Sturm S. Mabie

One of the most widely used techniques to quantify polar auxin transport is the measurement of auxin speed. To date there have been more than 90 published reports of auxin speed in 44 species. We have collected available speed measurements into a database, along with information on plant growth conditions and growth rate. Measured auxin speeds have a range of 1.2-18 mm/h, and show notable correlations with organ type, growth rate, and plant clade.


Frontiers in Plant Science | 2015

Auxin metabolism rates and implications for plant development

Eric M. Kramer; Ethan Ackelsberg

Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h–1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The high rates of conjugation suggest that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed.

Collaboration


Dive into the Eric M. Kramer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias I. Baskin

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Ranjan Swarup

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Myers

Bard College at Simon's Rock

View shared research outputs
Top Co-Authors

Avatar

Ethan Ackelsberg

Bard College at Simon's Rock

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge