Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Morrow is active.

Publication


Featured researches published by Eric M. Morrow.


Neuron | 2011

Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism

Stephan J. Sanders; A. Gulhan Ercan-Sencicek; Vanessa Hus; Rui Luo; Daniel Moreno-De-Luca; Su H. Chu; Michael P. Moreau; Abha R. Gupta; Susanne Thomson; Christopher E. Mason; Kaya Bilguvar; Patrícia B. S. Celestino-Soper; Murim Choi; Emily L. Crawford; Lea K. Davis; Nicole R. Davis Wright; Rahul M. Dhodapkar; Michael DiCola; Nicholas M. DiLullo; Thomas V. Fernandez; Vikram Fielding-Singh; Daniel O. Fishman; Stephanie Frahm; Rouben Garagaloyan; Gerald Goh; Sindhuja Kammela; Lambertus Klei; Jennifer K. Lowe; Sabata C. Lund; Anna D. McGrew

We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.


Cell | 1997

Crx, a Novel otx-like Homeobox Gene, Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation

Takahisa Furukawa; Eric M. Morrow; Constance L. Cepko

We have isolated a novel otx-like homeobox gene, Crx, from the mouse retina. Crx expression is restricted to developing and mature photoreceptor cells. CRX bound and transactivated the sequence TAATCC/A, which is found upstream of several photoreceptor-specific genes, including the opsin genes from many species. Overexpression of Crx using a retroviral vector increased the frequency of clones containing exclusively rod photoreceptors and reduced the frequency of clones containing amacrine interneurons and Müller glial cells. In addition, presumptive photoreceptor cells expressing a dominant-negative form of CRX failed to form proper photoreceptor outer segments and terminals. Crx is a novel photoreceptor-specific transcription factor and plays a crucial role in the differentiation of photoreceptor cells.


Science | 2008

Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry

Eric M. Morrow; Seung Yun Yoo; Steven W. Flavell; Tae Kyung Kim; Yingxi Lin; Robert Sean Hill; Nahit Motavalli Mukaddes; Soher Balkhy; Generoso G. Gascon; Asif Hashmi; Samira Al-Saad; Janice Ware; Robert M. Joseph; Rachel Greenblatt; Danielle Gleason; Julia A. Ertelt; Kira Apse; Adria Bodell; Jennifer N. Partlow; Brenda J. Barry; Hui Yao; Kyriacos Markianos; Russell J. Ferland; Michael E. Greenberg; Christopher A. Walsh

To find inherited causes of autism-spectrum disorders, we studied families in which parents share ancestors, enhancing the role of inherited factors. We mapped several loci, some containing large, inherited, homozygous deletions that are likely mutations. The largest deletions implicated genes, including PCDH10 (protocadherin 10) and DIA1 (deleted in autism1, or c3orf58), whose level of expression changes in response to neuronal activity, a marker of genes involved in synaptic changes that underlie learning. A subset of genes, including NHE9 (Na+/H+ exchanger 9), showed additional potential mutations in patients with unrelated parents. Our findings highlight the utility of “homozygosity mapping” in heterogeneous disorders like autism but also suggest that defective regulation of gene expression after neural activity may be a mechanism common to seemingly diverse autism mutations.


Neuron | 2000

rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells.

Takahisa Furukawa; Siddhartha Mukherjee; Zheng-Zheng Bao; Eric M. Morrow; Constance L. Cepko

We are interested in the mechanisms of glial cell development in the vertebrate central nervous system. We have identified genes that can direct the formation of glia in the retina. rax, a homeobox gene, Hes1, a basic helix-loop-helix gene, and notch1, a transmembrane receptor gene, are expressed in retinal progenitor cells, downregulated in differentiated neurons, and expressed in Müller glia. Retroviral transduction of any of these genes resulted in expression of glial markers. In contrast, misexpression of a dominant-negative Hes1 gene reduced the number of glia. Cotransfection of rax with reporter constructs containing the Hes1 or notch1 regulatory regions led to the upregulation of reporter transcription. These data suggest a regulatory heirarchy that controls the formation of glia at the expense of neurons.


Neuron | 2015

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

Stephan J. Sanders; Xin He; A. Jeremy Willsey; A. Gulhan Ercan-Sencicek; Kaitlin E. Samocha; A. Ercument Cicek; Vanessa Hus Bal; Somer L. Bishop; Shan Dong; Arthur P. Goldberg; Cai Jinlu; John F. Keaney; Lambertus Klei; Jeffrey D. Mandell; Daniel Moreno-De-Luca; Christopher S. Poultney; Elise B. Robinson; Louw Smith; Tor Solli-Nowlan; Mack Y. Su; Nicole A. Teran; Michael F. Walker; Donna M. Werling; Arthur L. Beaudet; Rita M. Cantor; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; Catherine Lord; Jennifer K. Lowe

Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).


Neuron | 2013

Using Whole-Exome Sequencing to Identify Inherited Causes of Autism

Maria H. Chahrour; Michael E. Coulter; Sarn Jiralerspong; Kazuko Okamura-Ikeda; Klaus Schmitz-Abe; David A. Harmin; Mazhar Adli; Athar N. Malik; Alissa M. D’Gama; Elaine T. Lim; Stephan J. Sanders; Ganesh H. Mochida; Jennifer N. Partlow; Christine M. Sunu; Jillian M. Felie; Jacqueline Rodriguez; Ramzi Nasir; Janice Ware; Robert M. Joseph; R. Sean Hill; Benjamin Y. Kwan; Muna Al-Saffar; Nahit Motavalli Mukaddes; Asif Hashmi; Soher Balkhy; Generoso G. Gascon; Fuki M. Hisama; Elaine LeClair; Annapurna Poduri; Ozgur Oner

Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.


Molecular Autism | 2012

Common genetic variants, acting additively, are a major source of risk for autism.

Lambertus Klei; Stephan J. Sanders; Vanessa Hus; Jennifer K. Lowe; A. Jeremy Willsey; Daniel Moreno-De-Luca; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; David H. Ledbetter; Catherine Lord; Shrikant Mane; Christa Lese Martin; Donna M. Martin; Eric M. Morrow; Christopher A. Walsh; Nadine M. Melhem; Pauline Chaste; James S. Sutcliffe; Matthew W. State; Edwin H. Cook; Kathryn Roeder; Bernie Devlin

BackgroundAutism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.MethodsBy using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.ResultsBy analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.ConclusionsOur results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.


American Journal of Medical Genetics | 2010

Deletions of NRXN1 (Neurexin-1) Predispose to a Wide Spectrum of Developmental Disorders

Michael S L Ching; Yiping Shen; Wen-Hann Tan; Shafali S. Jeste; Eric M. Morrow; Xiaoli Chen; Nahit Motavalli Mukaddes; Seung Yun Yoo; Ellen Hanson; Rachel Hundley; Christina Austin; Ronald Becker; Gerard T. Berry; Katherine Driscoll; Elizabeth C. Engle; Sandra L. Friedman; James F. Gusella; Fuki M. Hisama; Mira Irons; Tina Lafiosca; Elaine LeClair; David T. Miller; Michael Neessen; Jonathan Picker; Leonard Rappaport; Cynthia M. Rooney; Dean Sarco; Joan M. Stoler; Christopher A. Walsh; Robert Wolff

Research has implicated mutations in the gene for neurexin‐1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertained cases from 3,540 individuals referred clinically for comparative genomic hybridization testing from March 2007 to January 2009. Twelve subjects were identified with exonic deletions. The phenotype of individuals with NRXN1 deletion is variable and includes autism spectrum disorders, mental retardation, language delays, and hypotonia. There was a statistically significant increase in NRXN1 deletion in our clinical sample compared to control populations described in the literature (P = 8.9 × 10−7). Three additional subjects with NRXN1 deletions and autism were identified through the Homozygosity Mapping Collaborative for Autism, and this deletion segregated with the phenotype. Our study indicates that deletions of NRXN1 predispose to a wide spectrum of developmental disorders.


Cell | 2008

Autism and Brain Development

Christopher A. Walsh; Eric M. Morrow; John L.R. Rubenstein

Genetic studies are refining our understanding of neurodevelopmental mechanisms in autism. Some autism-related mutations appear to disrupt genes regulated by neuronal activity, which are especially important in development of the postnatal nervous system. Gene replacement studies in mice indicate that the developmental window to ameliorate symptoms may be wider than previously anticipated.


Philosophical Transactions of the Royal Society B | 2013

Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

Jung-Eun Lee; Christian Frankenberg; Christiaan van der Tol; Joseph A. Berry; Luis Guanter; C. Kevin Boyce; Joshua B. Fisher; Eric M. Morrow; John R. Worden; Salvi Asefi; Grayson Badgley; Sassan Saatchi

It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

Collaboration


Dive into the Eric M. Morrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Walsh

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge