Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Peterson is active.

Publication


Featured researches published by Eric M. Peterson.


Analytical Chemistry | 2010

Quantitative Detection of Single Molecules in Fluorescence Microscopy Images

Eric M. Peterson; Joel M. Harris

Fluorescence imaging and counting of single molecules adsorbed or bound to surfaces are being employed in a number of quantitative analysis applications. Reliable molecular counts with knowledge of counting uncertainties, both false-positive and false-negative probabilities, are critical to these applications. By counting stationary single molecules on a surface, spatial criteria may be applied to the image analysis to improve confidence in detection, which is especially critical when detecting single fluorescent labels. In this work, we describe a simple approach to incorporating spatial criteria for counting single molecules by using an intensity threshold to locate regions with multiple, adjacent intense pixels, where the size of these regions is guided by the point-spread function of the microscope. By requiring multiple, spatially correlated bright pixels, false-positive events resulting from random samples of background noise are minimized. The reliability of detection is established by quantitative knowledge of the distributions of background and signals. By measuring and modeling both the background and single-molecule intensity distributions, false-positive and false-negative detection probabilities are estimated for arbitrary threshold parameters by using combinatorial statistics. From this theory, detection parameters can be optimized to minimize false-positive and false-negative probabilities, which can be calculated explicitly. For detection of single rhodamine 6G molecules at a threshold set at 2.5 times the standard deviation above background, the false-negative probability was only 1.5%, determined from distributions of single-molecule intensities on well-populated surfaces, and the false-positive probability from background noise was 2.8 spots per 50 x 50 microm image. The false-positive events compare favorably with theoretical probabilities calculated using combinatorial statistical analysis and simulated false-positive events counted in images of random noise.


Analytical Chemistry | 2013

Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles.

Justin T. Cooper; Eric M. Peterson; Joel M. Harris

Due to its high specific surface area and chemical stability, porous silica is used as a support structure in numerous applications, including heterogeneous catalysis, biomolecule immobilization, sensors, and liquid chromatography. Reversed-phase liquid chromatography (RPLC), which uses porous silica support particles, has become an indispensable separations tool in quality control, pharmaceutics, and environmental analysis requiring identification of compounds in mixtures. For complex samples, the need for higher resolution separations requires an understanding of the time scale of processes responsible for analyte retention in the stationary phase. In the present work, single-molecule fluorescence imaging is used to observe transport of individual molecules within RPLC porous silica particles. This technique allows direct measurement of intraparticle molecular residence times, intraparticle diffusion rates, and the spatial distribution of molecules within the particle. On the basis of the localization uncertainty and characteristic measured diffusion rates, statistical criteria were developed to resolve the frame-to-frame behavior of molecules into moving and stuck events. The measured diffusion coefficient of moving molecules was used in a Monte Carlo simulation of a random-walk model within the cylindrical geometry of the particle diameter and microscope depth-of-field. The simulated molecular transport is in good agreement with the experimental data, indicating transport of moving molecules in the porous particle is described by a random-walk. Histograms of stuck-molecule event times, locations, and their contributions to intraparticle residence times were also characterized.


Analytical Chemistry | 2016

Single-Molecule Fluorescence Imaging of Interfacial DNA Hybridization Kinetics at Selective Capture Surfaces

Eric M. Peterson; Michael W. Manhart; Joel M. Harris

Accurate knowledge of the kinetics of complementary oligonucleotide hybridization is integral to the design and understanding of DNA-based biosensors. In this work, single-molecule fluorescence imaging is applied to measuring rates of hybridization between fluorescently labeled target ssDNA and unlabeled probe ssDNA immobilized on glass surfaces. In the absence of probe site labeling, the capture surface must be highly selective to avoid the influence of nonspecific adsorption on the interpretation of single-molecule imaging results. This is accomplished by increasing the probe molecule site densities by a factor of ∼100 compared to optically resolvable sites so that nonspecific interactions compete with a much greater number of capture sites and by immobilizing sulfonate groups to passivate the surface between probe strands. The resulting substrates exhibit very low nonspecific adsorption, and the selectivity for binding a complementary target sequence exceeds that of a scrambled sequence by nearly 3 orders of magnitude. The population of immobilized DNA probe sites is quantified by counting individual DNA duplexes at low target concentrations, and those results are used to calibrate fluorescence intensities on the same sample at much higher target concentrations to measure a full binding isotherm. Dissociation rates are determined from interfacial residence times of individual DNA duplexes. Equilibrium and rate constants of hybridization, K(a) = 38 (±1) μM(-1), k(on) = 1.64 (±0.06) × 10(6) M(-1) s(-1), and k(off) = 4.3 (±0.1) × 10(-2) s(-1), were found not to change with surface density of immobilized probe DNA, indicating that hybridization events at neighboring probe sites are independent. To test the influence of probe-strand immobilization on hybridization, the kinetics of the probe target reaction at the surface were compared with the same reaction in free solution, and the equilibrium constants and dissociation and association rates were found to be nearly equivalent. The selectivity of these capture surfaces should facilitate sensitive investigations of DNA hybridization at the limit of counting molecules. Because the immobilized probe DNA on these surfaces is unlabeled, photobleaching of a probe label is not an issue, allowing capture substrates to be used for long periods of time or even reused in multiple experiments.


Journal of the American Chemical Society | 2012

Microscopic rates of peptide-phospholipid bilayer interactions from single-molecule residence times.

Grant A. Myers; Daniel A. Gacek; Eric M. Peterson; Christopher B. Fox; Joel M. Harris

The binding of glucagon-like peptide-1 (GLP-1) to a planar phospholipid bilayer is measured using single-molecule total internal reflection fluorescence microscopy. From several reports in the literature, GLP-1 has been shown to be a random coil in free solution, adopting a folded, α-helix conformation when intercalated into membrane environments. Single-molecule fluorescence measurements of GLP-1 binding to supported lipid bilayers show evidence of two populations of membrane-associated molecules having different residence times, suggesting weakly adsorbed peptides and strongly bound peptides in the lipid bilayer. The path to and from a strongly bound (folded, intercalated) state would likely include an adsorbed state as an intermediate, so that the resulting kinetics would correspond to a consecutive first-order reversible three-state model. In this work, the relationships between measured single-molecule residence times and the microscopic rates in a three-state kinetic model are derived and used to interpret the binding of GLP-1 to a supported lipid bilayer. The system of differential equations associated with the proposed consecutive-three state kinetics scheme is solved, and the solution is applied to interpret histograms of single-molecule, GLP-1 residence times in terms of the microscopic rates in the sequential two-step model. These microscopic rates are used to estimate the free energy barrier to adsorption, the fraction of peptides adsorbing to the membrane surface that successfully intercalate in the bilayer, the lifetime of inserted peptides in the membrane, and the free energy change of insertion into the lipid bilayer from the adsorbed state. The transition from a random coil in solution to a folded state in a membrane has been recognized as a common motif for insertion of membrane active peptides. Therefore, the relationships developed here could have wide application to the kinetic analysis of peptide-membrane interactions.


Applied Spectroscopy | 2010

Identification of Single Fluorescent Labels Using Spectroscopic Microscopy

Emily C. Heider; Moussa Barhoum; Eric M. Peterson; Jonathan J. Schaefer; Joel M. Harris

Detection of single, fluorescently labeled biomolecules is providing a powerful approach to measuring molecular transport, biomolecular interactions, and localization in biological systems. Because the biological molecules of interest rarely exhibit sufficient intrinsic fluorescence to allow observation of individual molecules, they are usually labeled with fluorescent dye molecules, fluorescent proteins, semiconductor nanocrystals or quantum dots, or fluorescently doped silica or polymer nanospheres to allow their detection. Differences in the photophysical and spectral properties of different labels allow one to identify individual molecules by distinguishing their corresponding labels. A simple approach to measuring fluorescence spectra of individual fluorescent labels can be implemented in a standard wide-field fluorescence microscope, where a grating or prism is incorporated into the path from the microscope to an imaging detector to disperse the emission spectrum. In this work, principal components and cluster analysis are applied to the identification of fluorescence spectra from single fluorescent labels, with statistical tests of the classification results. Spectra are determined from diffracted images of fluorescent nanospheres labels, where emission maxima are separated by less than 20 nm, and of single dye-molecule labels with 30 nm separation. Clusters of points in an eigenvector representation of the spectra correctly classify known labels (both nanospheres and single molecules) and unambiguously identify unknown labels in mixtures.


ChemBioChem | 2015

Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

Jonathan M. Hartley; Te Wei Chu; Eric M. Peterson; Rui Zhang; Jiyuan Yang; Joel M. Harris; Jindřich Kopeček

Super‐resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super‐resolution images were analyzed by using pair‐correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre‐treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼200 nm in cells treated with the hybrid nanoconjugates. Super‐resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.


Analytical Chemistry | 2011

Quantitative Fluorescence Microscopy To Determine Molecular Occupancy of Phospholipid Vesicles

Emily C. Heider; Eric M. Peterson; Moussa Barhoum; Karl Heinz Gericke; Joel M. Harris

Encapsulation of molecules in phospholipid vesicles provides unique opportunities to study chemical reactions in small volumes as well as the behavior of individual proteins, enzymes, and ribozymes in a confined region without requiring a tether to immobilize the molecule to a surface. These experiments generally depend on generating a predictable loading of vesicles with small numbers of target molecules and thus raise a significant measurement challenge, namely, to quantify molecular occupancy of vesicles at the single-molecule level. In this work, we describe an imaging experiment to measure the time-dependent fluorescence from individual dye molecules encapsulated in ~130 nm vesicles that are adhered to a glass surface. For determining a fit of the molecular occupancy data to a Poisson model, it is critical to count empty vesicles in the population since these dominate the sample when the mean occupancy is small, λ ≤ ~1. Counting empty vesicles was accomplished by subsequently labeling all the vesicles with a lipophilic dye and reimaging the sample. By counting both the empty vesicles and those containing fluors, and quantifying the number of fluors present, we demonstrate a self-consistent Poisson distribution of molecular occupancy for well-solvated molecules, as well as anomalies due to aggregation of dye, which can arise even at very low solution concentrations. By observation of many vesicles in parallel in an image, this approach provides quantitative information about the distribution of molecular occupancy in a population of vesicles.


Langmuir | 2013

Single-molecule fluorescence imaging of DNA at a potential-controlled interface.

Eric M. Peterson; Joel M. Harris

Many interfacial chemical phenomena are governed in part by electrostatic interactions between polyelectrolytes and charged surfaces; these phenomena can influence the performance of biosensors, adsorption of natural polyelectrolytes (humic substances) on soils, and production of polyelectrolyte multilayer films. In order to understand electrostatic interactions that govern these phenomena, we have investigated the behavior of a model polyelectrolyte, 15 kbp fluorescently labeled plasmid DNA, near a polarized indium tin oxide (ITO) electrode surface. The interfacial population of DNA was monitored in situ by imaging individual molecules through the transparent electrode using total-internal-reflection fluorescence microscopy. At applied potentials of +0.8 V versus Ag/AgCl, the DNA interfacial population near the ITO surface can be increased by 2 orders of magnitude relative to bulk solution. The DNA molecules attracted to the interface do not adsorb to ITO, but rather they remain mobile with a diffusion coefficient comparable to free solution. Ionic strength strongly influences the sensitivity of the interfacial population to applied potential, where the increase in the interfacial population over a +300 mV change in potential varies from 20% in 30 mM ionic strength to over 25-fold in 300 μM electrolyte. The DNA accumulation with applied potential was interpreted using a simple Boltzmann model to predict average ion concentrations in the electrical double layer and the fraction of interfacial detection volume that is influenced by applied potential. A Gouy-Chapman model was also applied to the data to account for the dependence of the ion population on distance from the electrode surface, which indicates that the net charge on DNA responsible for interactions with the polarized surface is low, on the order of one excess electron. The results are consistent with a small fraction of the DNA plasmid being resident in the double-layer and with counterions screening much of the DNA excess charge.


Analytical Chemistry | 2018

Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging

Eric M. Peterson; Joel M. Harris

Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.


Langmuir | 2013

Imaging fluorescent nanoparticles to probe photoinduced charging of a semiconductor-solution interface.

Eric M. Peterson; Joel M. Harris

Optically transparent semiconductors allow simultaneous control of interfacial electrical potential and spectroscopic observation of chemistry near the electrode surface. Care must be taken, however, to avoid unwanted photoexcitation-induced charging of the semiconductor electrode that could influence the results. In this work, we investigate the in situ surface charging by photoexcitation well below the band gap of an optically transparent semiconductor, indium-tin oxide (ITO) electrode. Using total-internal-reflection fluorescence microscopy, the population of ~100-nm negatively charged carboxylate-polystyrene fluorescent nanoparticles at an ITO-aqueous solution interface could be monitored in situ. At positive applied potentials (~0.7 V versus Ag/AgCl), nanoparticles accumulate reversibly in the electrical double-layer of the ITO surface, and the interfacial nanoparticle populations increase with 488-nm excitation intensity. The potential sensitivity of nanoparticle population exhibited no dependence on excitation intensity, varied from 0.1 to 10 W cm(-2), while the onset potential for particle accumulation shifted by as much as 0.3 V. This shift in surface potential appears to be due to photoexcitation-induced charging of the ITO, even though the excitation radiation photon energy, ~2.4 eV, is well below the primary band gap of ITO, >3.5 eV. A kinetic model was developed to determine the photon order of electron-hole generation relative to the electron-hole recombination. The photoexcitation process was found to be first-order in photon flux, suggesting one-photon excitation of an indirect band gap or defect sites, rather than two-photon excitation into the direct band gap. A control experiment was conducted with red-fluorescent carboxylate-polystyrene particles that were counted using 647-nm excitation, where the photon energy is below the indirect band gap or defect site energy and where the optical absorption of the film vanishes. Red illumination between 1 and 15 W cm(-2) produced no detectable shifts in the onset accumulation potential, which is consistent with the negligible optical absorption of the ITO film at this longer wavelength.

Collaboration


Dive into the Eric M. Peterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher B. Fox

Infectious Disease Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge